| 研究生: |
鍾儀文 Chung, Yi-Wen |
|---|---|
| 論文名稱: |
以膠體製程製備光子晶體及其性質之探討 Fabrication and characterization of photonic crystals by employing the colloidal process |
| 指導教授: |
洪敏雄
Hon, Min-Husing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 膠體晶體 、光子晶體 、反蛋白石結構 、光能隙材料 、模板輔助製程 |
| 外文關鍵詞: | inverse opal, colloidal crystal, photonic crystal, photonic band gap materials, template-mediated process |
| 相關次數: | 點閱:89 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光子晶體是一種新穎的奈米光電材料,主要由兩種具有不同介電常數或折射率的材料,以週期性的規則排列方式所建構而成。藉由控制材料的折射率或組成結構的週期距離,即可操控晶體對特定波長之光吸收效應,此即為光子晶體最主要的光學特性。近年來由於奈米技術的蓬勃發展,衍生出許多製作光子晶體的方法,而本研究是利用膠體的製程以製備出多種不同型態的光子晶體,並量測其光學性質。
首先以均一粒徑分佈的膠體球利用自我組裝的方式,堆疊出具週期性規則排列的膠體晶體結構,而在膠體球自我組裝的機制中,則以界面毛細力作為膠體球在聚集時的驅動力,將膠體溶液的蒸發溫度控制在45℃,以增加系統的製程速率,而提高系統的溼度,將使界面毛細力具有一級與二級毛細力的雙重效應,因此在24h內,即可製備出高品質的膠體晶體,為一有效率的製程,而將此方法命名為強化毛細力法。對表面化學現象作更進一步的探討,發現在高溼度的狀態下,將導致二級毛細力的效應增加,進而也提升了膠體晶體的品質。
利用強化毛細力法,分別獲得由180、210與300 nm均一粒徑分佈的 P(St-co-MAA)膠體球所堆積形成的三種膠體晶體,而經由光譜儀的量測得知,其波長分別在441、510與660 nm處產生了強的吸收峰,由此可證明所得者為高品質之膠體晶體,因為膠體球具有週期性規則堆積的特性,可以當作光子晶體使用。再以膠體晶體當作模板,結合奈米孔隙的填充技術,可製備不同型態的光子晶體。實驗先以浸鍍法填充奈米孔隙,將膠體晶體浸置於含有不同濃度的二氧化矽奈米顆粒懸浮液中,使二氧化矽奈米顆粒填充於膠體晶體的孔隙中,乾燥之後即可將二氧化矽顆粒被覆於膠體球表面,最後形成以二氧化矽為球殼的核殼式光子晶體,而二氧化矽濃度分別由0.017 wt%與0.122 wt%增加至0.244 wt%,其吸收峰的位置也由456 nm和460 nm增加至466 nm。
此外利用電泳法沉積法填充奈米孔隙,先將氧化鋅之奈米顆粒填充於膠體晶體的孔隙中,再利用高溫移除膠體晶體的模板,最後即可獲得以氧化鋅為骨架,每個球形孔洞均被周圍六個相似的孔洞所包圍,而呈現六方密排陣列的孔洞結構。此為氧化鋅之反蛋白石結構,在波長560 nm處有吸收峰值。
若以電化學聚合法填充奈米孔隙,則可以獲得大面積之導電高分子聚苯胺的反蛋白石結構,在波長465 nm處有強的吸收峰,而原始之膠體晶體模板的吸收峰係出現在660 nm,亦即在反蛋白石結構化之後,光子晶體的吸收光譜發生藍移的現象。
Photonic crystal consisted of periodic well-ordered arrangement of two materials with different dielectric constant or refractive index is a novel optoelectronic material. This special nanostructure can have an electromagnetic band gap. Recently, due to the development of nanotechnology, many methods for fabricating photonic crystals had been reported. Hence, our research will focus on fabrication and characterization of photonic crystals by using colloidal process.
The self-assembly of monodisperse colloidal particles results in the well-ordered colloidal crystals. During the self-assembly process, the capillary force acts as the driving force for gathering colloidal particles. Because of higher evaporative temperature (45℃), the process rate will increase. Further, through increasing system humidity, the capillary force will be separated as the primary and secondary ones. Finally, the high-quality colloidal crystals will be formed in 24h. This method, named capillary-enhanced process, is an efficient process. Moreover, according to the discussion of surface chemistry, the secondary capillary effect will be increased with increasing humidity level. This results in elevating the quality of colloidal crystals.
Three kinds of colloidal crystals with 180, 210 and 300 nm diameter fabricated by using capillary-enhanced process will possess the absorptive peaks at the wavelengths of 441, 510 and 660 nm. Hence, colloidal crystals also act as the photonic crystals. Three types of photonic crystals derived from templating colloidal crystals can be formed by infiltrating the interstitial volumes with different materials. Firstly, colloidal crystals are dipped into the suspension with the silica nanoparticles. Subsequently, silica nanopartilces will fill into the interstitial spaces of colloidal crystals. After drying process, silica nanoparticles will coat onto the colloidal surface. Hence, photonic crystal with core-shell nanostructure will be fabricated. These core-shell photonic crystals will possess the absorptive peaks at the wavelengths of 456, 460, 466 nm as dipped into the silica suspensions with different nanoparticle concentrations of 0.017, 0.122 and 0.244 wt%, respectively.
By employing electrophoretic deposition process, ZnO nanoparticles can fill the interstitial spaces of colloidal crystals. After removing colloidal template, well-ordered macoporous structure based on ZnO can be obtained. Through SEM observation, each sphere hole is surrounded by six neighboring holes in macroporous structure. Because of the presence of cracks in the inverse opal film, only a weak absorptive peak at the wavelength of 465 nm can be observed. In the final experimental part, the high-quality polyaniline inverse opal film in large area can be fabricated by utilizing electrochemical polymerization, and they also possess an intensive absorptive peak at the wavelength of 465 nm. As compared with the absorptive peak (660 nm) of the original colloidal crystal template with 300 nm diameter, the blue-shift effect of photonic crystal based on polyaniline inverse opal will occur.
1. J. Bardeen, W. H. Brattain, “The transistor, a semiconductors triode”, Phys. Rev., 71, 230(1948).
2. P. N. Noyce, “Semiconductor device-and-lead structure”, U. S. Patent 2, 981, 877 (filed 1959, granted 1961).
3. S. O. Kasap, Optoelectronics and photonics: principles and practices, (Prentice Hall, Upper Saddle River, 2001), Chapter 3-6, PP.107-272.
4. T. Tsukada, TFT/LCD :liquid-crystal displays addressed by thin-film transistors, (Gordon and Breach, Australia, 1996), Chapter 1, PP. 1-10.
5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical Review Letters, 58, 2059(1987).
6. S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Physical Review Letters, 58, 2486(1987).
7. J. C. Knight, T. A. Birks, B. J. Mangan, P. St. J. Russell, “Microstructured silica as an optical-fiber material”, MRS Bulletin, 8, 614(2001).
8. A. Polman, P. Wiltzius, “Materials science aspects of photonic crystals”, MRS Bulletin, 8, 608(2001).
9. A. J. Turberfield, “Photonic crystals made by holographic lithography”, MRS Bulletin, 8, 632(2001).
10. Y. N. Xia, B. Gates, Z. Y. Li, “Self-assembly approaches to three-dimensional photonic crystals”, Advanced Materials, 409, 13(2001).
11. Y. N. Xia, “Photonic crystals”, Advanced Materials, 369, 13(2001).
12. M. Egen, R. Voss, B. Griesebock, R. Zentel, S. Romanov, C. S. Torres, “Heterostructures of polymer photonic crystal films”, Chemistry of Materials, 15, 3786(2003).
13. R. Mayoral, J. Requena, J. S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado, A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure”, Advanced Materials, 9, 257(1997).
14. H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. S. Moya, J. Requena, A. Mifsud, V. Fomes, “Control of the photonic crystal properties of fcc-packed submicrometer SiO2 spheres by sintering”, Advanced Materials, 10, 480(1998).
15. Z. Zhou, Z. S. Zhao, “opal and inverse opal fabricated with a flow-controlled vertical deposition method”, Langmuir, 21, 4717(2005).
16. B. T. Holland, C. F. Blanford, T. Do, A. Stein, “Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites”, Chemistry of Materials, 11, 795(1999).
17. J. D. Joannopoulos, “Self-assembly lights up”, Nature, 414, 257(2001).
18. Y. H. Ye, F. LeBlanc, A. Hache, V. V. Truong, “Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality”, Applied Physics Letters, 78, 52(2001).
19. S. H. Im, O. O. Park, “Effect of evaporation temperature on the quality of colloidal crystals at the water-air interface”, Langmuir, 18, 9642(2002).
20. H. Miguez, E. Chomski, F. G. Santamaria, M. Ibisate, S. John, C. Lopez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, H. M. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition”, Advanced Materials, 13, 1634(2001).
21. J. S. King, C. W. Neff, C. J. Summers, W. Park, S. Blomquist, E. Forsythe, D. Morton, “High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition ”, Applied Physics Letters, 83, 2566(2003).
22. J. E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania”, Science, 291, 802(1998).
23. Z. Z. Gu, A. Fujishima, O. Sato, “Fabrication of high-quality opal films with controllable thickness”, Chemistry of Materials, 14, 760(2002).
24. H. Miguez, F. Meseguer, C. lopez, M. Holgado, G. Anderasen, A. Mifsud, V. Fornes, “Germanium FCC structure from a colloidal crystal template”, Langmuir, 16, 4405(2000).
25. Z. Z. Gu, S. Hayami, S. Kubo, Q. B. Meng, Y. Einaga, D. A. Tryk, A. Fujishima, O. Sato, “Fabrication of structured porous film by electrophoresis”, J. Am. Chem. Soc., 123, 175(2001).
26. Y. C. Lee, T. J. Kuo, C. J. Hsu, Y. W. Su, C. C. Chen, “Fabrication of 3D macroporous structure of II-VI and III-V semiconductors using electrochemical deposition”, Langmuir, 18, 9942(2002).
27. E. Yablonovitch, “Photonic crystal: semiconductors of light”, Scientific American, 12, 35(2001).
28. R. Parker, L. Welch, D. Driver, N. Matini, “Opal analogue discovered in a weevil”, Nature, 426, 786(2003).
29. D. Joannopoulos, D. Meade, N. Winn, Photonic crystals, molding the flow of light, (Princeton university press, New Jersey), Chapter 1, P. 6.
30. D. Joannopoulos, D. Meade, N. Winn, “Photonic crystals, molding the flow of light”, (Princeton university press, New Jersey), Chapter 4, P. 42.
31. D. Joannopoulos, D. Meade, N. Winn, “Photonic crystals, molding the flow of light”, (Princeton university press, New Jersey), Chapter 5, P. 65.
32. D. Joannopoulos, D. Meade, N. Winn, “Photonic crystals, molding the flow of light”, (Princeton university press, New Jersey), Chapter 6, P. 83.
33. P. G. Hewitt, “Conceptual physics, eighth edition”, Addison & Wesley, New York, Chapter 27, P496 (1998).
34. T. Taton, D. Norris, “Defective promise in photonics”, Nature, 416, 685(2002).
35. P. A. Hiltner, I. M. Krieger, “Diffraction of light by ordered suspensions” The Journal of Physical Chemistry, 73, 2386(1969).
36. E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms”, Physical Review Letters, 67, 2295(1991).
37. K. M. Lenung, “Diamondlike photonic band-gap crystal with a sizable band gap”, Phys. Rev. B, 56, 3517(1997).
38. S. H. Fan, P. R. Villeneuve, R. D. Meade, J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales”, Appl. Phys. Lett. 65, 1466(1994).
39. M. Wada, Y. Doi, K. Inoue, J. W. Haus, Z. Yuan, “A simple-cubic photonic lattice in silicon”, Appl. Phys. Lett. 70, 2966(1997).
40. S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, M. Okano, “Alignment and stacking of semiconductor photonic bandgaps by wafer fusion”, IEEE Journal of Lightwave Technology 17, 1948(1999).
41. J. G. Fleming, S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95μm”, Opt. Lett., 24, 49(1999).
42. A. van Blaaderen, “From the de broglie to visible wavelengths: manipulating electrons and photons with colloids”, MRS Bull, 23, 39(1998).
43. A. D. Dinsmore, J. C. Crocker, A. G. Yodh, “Self-assembly of colloidal crystals”, Current Opinion in Colloidal and Interface Science, 3, 5(1998).
44. A. P. Gast, W. B. Russel, “Simple ordering in complex fluids- colloidal particles suspended in solution provide intriguing models for studying phase transitions”, Physics Today, 51, 24(1998).
45. Y. Monovoukas, G. G. Fuller, A. P. Gast, “Optical anisotropy in colloidal crystals”, Journal of Chemical Physics, 93, 8294(1990).
46. R. F. Service, “Building better photonic crystals”, Science, 29 2399(2002).
47. W. Hongkai, R. T. Venkat, W. Sue, M. W. George, “Using hierarchical self-assembly to form three-dimensional lattices of spheres”, Journal of the American Chemical Society, 124, 14495(2002).
48. L. V. Woodcock, “Entropy difference between crystal phases”, Nature, 388, 235(1997).
49. R. Mayoral, J. Requena, J. S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado, A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure”, Advanced Materials, 9, 257(1997).
50. D. W. McComb, B. M. Treble, C. J. Smith, R. M. D. L. Rue, N. P. Johnson, “Synthesis and characterization of photonic crystals”, Journal of Materials Chemistry, 11, 142(2001).
51. P. Jiang, J. F. Bertone, K. S. Hwang, V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness”, Chemistry of Materials, 11, 2132(1999).
52. M. Muller, R. Zentel, T. Maka, S. G. Romanov, C. M. S. Torres, “Dye-containing polymer beads as photonic crystals”, Chemistry of Materials, 12, 2508(2000).
53. P. V. Braun, W. Wiltzius, “Electrochemically grown photonic crystals”, Nature, 402, 603(1999).
54. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals”, Nature, 414, 289(2001).
55. Z. Z. Gu, S. Kubo, A. Fujishima, O. Sato, “Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for fabrication of films with an ordered porous structure”, Applied Physics A: Materials Science and Processing, 74, 127(2002).
56. A. Richel, N. P. Johnson, D. W. McComb, “Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix”, Applied Physics Letters, 76, 1816(2000).
57. W. Stober, A. Fink, “Controlled growth of monodisperse silica spheres in the micron size range”, Journal of Colloid and Interface Science, 26, 62(1968).
58. L. M. Goldenberg, J. Wagner, J. Stumpe, B. R. Paulke, E. Gornitz, “Ordered arrays of large latex particles organized by vertical deposition”, Langmuir, 18, 3319(2002).
59. M. Egen, R. Voss, B. Griesebock, R. Zentel, “Heterostructures of polymer photonic crystal films”, Chemistry of Materials, 15, 3786(2003).
60. H. Cong, W. Cao, “Colloidal crystallization induced by capillary force”, Langmuir, 19, 8177(2003).
61. H. Miguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, L. Vazquez, “Evidence of FCC crystallization of SiO2 nanospheres”, Langmuir, 13, 6009(1997).
62. B. Cheng, P. Ni, C. Jin, Z. Li, D. Zhang, P. Dong, Z. Guo, “More direct evidence of the fcc arrangement for artificial opal”, Optics Communications, 170, 41(1999).
63. M. Augustin, H. J. Fuchs, D. Schelle, E. B. Kley, S. Nolte, A. Tunnermann, R. IIiew, C. Eltrich, U. Peschel, F. Lederer, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices”, Applied Physics Letters, 84, 663(2004).
64. C. L. Huisman, J. Schoonman, A. Goossens, “The application of inverse titania opals in nanostructured solar cells”, Solar Energy Materials and Solar Cells, 85, 115(2005).
65. G. A. Ozin, S. M. Yang, “The race for the photonic chip: colloidal crystal assembly in silicon wafers”, Advanced Functional Materials, 11, 95(2001).
66. J. Moosburger, M. Kamp, A. Forchel, R. Ferrini, D. Leuenberger, R. Houdre, S. Anand, J. Berggren, “Nanofabrication of high quality photonic crystals for integrated optics circuits”, Nanotechnology, 13, 341(2002).
67. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials”, Nature, 389, 829(1997).
68. W. P. Qian, Z. Z. Gu, A. Fujishima, O. Sato, “Three-dimensionally ordered macroporous polymer materials: an approach, for biosensor applications”, Langmuir, 18, 4526(2002).
69. Y. J. Lee, S. A. Pruzinsky, P. V. Braun, “Glucose-sensitive, inverse opal hydrogels: analysis of optical diffraction response”, Langmuir, 20, 3096(2004).
70. V. Vrkoslav, I. Jelinek, G. Broncova, V. Kral, J. Dian, “Polypyrrole-functionallized porous silicon for gas sensing applications”, Materials Science & Engineering C: Biomimetic and Supramolecular Systems, 26, 1072(2006).
71. S. I. Matsushita, T. Miwa, D. A. Tryk and A. Fujishima, “New mesostructured porous TiO2 surface prepared using a two-dimensional array-based template of silica particles”, Langmuir, 14, 6441(1998).
72. T. Bitzer, Honeycomb Technology, (Chapman and Hall, London, 1997), Chapter 1, PP. 1-9.
73. R. E. Kesting, Synthetic Polymer Membranes, (Wiley, New York, 1985), Chapter 1, PP. 1-5.
74. P. H. Wang, C. Y. Pan, “Preparation of styrene/methacrylic acid copolymer microspheres and theircomposites with metal particles”, Colloid. Polym. Sci., 278, 586(2000).
75. S. K. Park, K. D. Kim, H. T. Kim, “Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles”, Colloids and Surfaces A, 197, 7(2002).
76. D. W. Bahnemann, C. Kormann, M. R. Hoffmann, “Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study”, J. Phys. Chem., 91, 3789(1987).
77. P. Si, X. Bian, H. Li, Y. Liu, “Synthesis of ZnO nanowhiskers by a simple method”, Mater. Lett., 57, 4079(2003).
78. J. H. Yen, I. C. Leu, , M. T. Wu, C. C. Lee, M. H. Hon, “Effect of nanowire catalyst for carbon nanotubes growth by ICP-CVD”, Diamond and Related Materials, 14, 841(2005).
79. P. N. Bartlett, P. R. Birkin, M. A. Ghanem, C. S. Toh, “Electrochemical syntheses of highly ordered macroporous conducting polymers grown around self-assembled colloidal templates”, Journal of Materials Chemistry, 11, 849(2001).
80. E. Matijevic, “Monodispersed colloids: art and science”, Langmuir, 2, 12(1986).
81. S. Shen, E. D. Sudol, M. S. El-Aasser, “Control of particle size in dispersion polymerization of methyl methacrylate”, Journal of Polymer Science: Part A: Polymer Chemistry, 31, 1393(1993).
82. S. Omi, K. C. Katami, A. Yamamoto, M. Iso, “Synthesis of polymeric microspheres employing SPG emulsification technique”, Journal of Applied Polymer Science, 51, 1(1994).
83. S. Rakers, L. F. Chi, H. Fuchs, “Influence of the evaporation rate on the packing order of polydisperse latex monofilms”, Langmuir, 13, 7121(1997).
84. R. J. Hunter, Introduction to Modern Colloid Science, (Oxford University Press, Oxford, England, 1993), Chapter 5, PP. 135-138.
85. R. J. Hunter, Introduction to Modern Colloid Science, (Oxford University Press, Oxford, England, 1993), Chapter 5, PP. 142-150.
86. J. M. Coulson, J. F. Richardson, J. R. Backhurst, J. H. Harker, Chemical Engineering, 4th ed., (Pergamon Press: Oxford, England, 1991), Chapter 2, PP. 690-693.
87. R. J. Hunter, Introduction to Modern Colloid Science, (Oxford University Press, Oxford, England, 1993), Chapter 5, PP. 159-163.
88. P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, K. Nagayama, “Energetical and force approaches to the capillary interactions between particles attached to a liquid-fluid interface”, Journal of Colloid and Interfaces Science, 155, 420-437(1993).
89. J. Y. Shiu, C. W. Kuo, P. Chen, C. Y. Mou, “Fabrication of tunable superhydrophobic surfaces by nanosphere lithography”, Chemistry of Materials, 16, P561(2004).
90. S. L. Kuai, X. F. Hu, A. Hache, V. V. Truong, “High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique”, J. Cryst. Growth, 267, 317(2004).
91. F. Fleischhaker, R. Zentel, “Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots”, Chemistry of Materials, 17, 1346(2005).
92. F. Gracia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, C. Lopez, “Refractive index properties of calcined silica submicrometer spheres”, Langmuir, 18, 1942 (2002).
93. H. L. Hartnagel, A. K. Jain, C. Jagadish, “Semiconducting transparent thin films”, Published by Institute of Physics Publication, P17 (1995).
94. R. Wang, L. H. King, A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide”, J. Master. Res., 11, 1659(1996).
95. Y. W. Jin, J. E. Jang, W. K. Yi, J. E. Jung, N. S. Lee, J. M. Kim, D. Y. Jeon, J. P. Hong, “Performance of electrophoretic deposited low voltage phosphors for full color field emission display devices”, J. Vac. Sci. Technol. B, 17, 489(1999).
96. A. N. Georgobiani, A. N. Gruzintsev, V. T. Volkov and M. O. Vorob’ev, “Effect of annealing in oxygen radicals on luminescence and electrical conductivity of ZnO:N films”, Semiconductors, 36, 265 (2002).
97. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Wwber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292, 1897(2001).
98. S. I. Matsushita, T. Miwa, D. A. Tryk and A. Fujishima, “New mesostructured porous TiO2 surface prepared using a two-dimensional array-based template of silica particles”, Langmuir, 14, 6441 (1998).
99. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials”, Nature, 389, 829 (1997).
100. T.Yamada, H. S. Zhou, H. Uchida, M. Tomita, Y. Ueno, I. Honma, K. Asai and T. Katsube, “Application of a cubic-like mesoporous silica film to a surface photovoltage gas sensing system”, Microporous and Mesoporous Materials, 54, 269 (2002).
101. W. P Qian, Z. Z. Gu, A. Fujishima, O. Sato, “Three-dimensionally ordered macroporous polymer materials: an approach for biosensor applications”, Langmuir, 18, 4526(2002).
102. Y. J. Lee, S. A. Pruzinsky, P. V. Braun, “Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response”, Langmuir, 20, 3096(2004).
103. C. Lopez “Materials aspects of photonic crystals”, Advanced Materials, 15, 1679(2003).
104. M. Imada, S. Noda, A. Chutinan and T. Tokuda, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure”, Appl. Phys. Lett., 75, 316 (1999).
105. J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays”, J. Chem. Phys., 115, 5714(2001).
106. F. F. Reuss, Memoires de la societe imperiale, (Naturalists, Moscou, 1809), Chapter 2, P. 327.
107. Z. Z. Gu, S. Hayami, S. Kubo, Q. B. Meng, Y. Einaga, D. A. Tryk, A. Fujishima, O. Sato, “Fabrication of structured porous film by electrophoresis”, J. Am. Chem. Soc., 123, 175(2001).
108. Y. C. Wang, I. C. Leu and M. H. Hon, “Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings”, J. Am. Ceram. Soc., 87, 84 (2004).
109. Y. C. Wang, I. C. Leu and M. H. Hon, “Dielectric property and structure of anodic alumina template and their effects on the electrophoretic deposition characteristics of ZnO nanowire arrays”, Journal of Applied Physics, 95, 1444 (2004).
110. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York, 164 (2001).
111. Y. C. Wang, I. C. Leu and M. H. Hon, “Size control of ZnO nanofibril within template by electrophoretic deposition”, Electrochemical and Solid State Letters, 7, D15(2004).
112. J. E. G. J. Wijnhoven, W. L. Vos, “Preparation of photonic crystals made of air spheres in titania”, Science, 281, 802(1998).
113. N. Gospodinova, L. Terlemezyan, “Conducting polymers prepared by oxidative polymerization: polyaniline”, Progress in Polymer Science, 23, 1443(1998).
114. A. D Paoli, W. A. Gazotti, “Conductive polymer blends: preparation, properties and applications”, Macromol. Symp., 189, 83(2002).
115. S. Ivanov, P. Mokreva, V. Tsakova, I. Terlemezyan, “Electrochemical and surface structural characterization of chemically and electrochemically synthesized polyaniline coatings”, Thin Solid Films, 441, 44(2003).
116. S. Tian, J. Wang, U. Jonas, W. Knoll, “Inverse opals of polyaniline and its copolymers prepared by electrochemical techniques”, Chem. Mater. 17, 5726(2005).
117. D. Wang, F. Caruso, “Fabrication of polyaniline inverse opals via templating ordered colloidal assemblies”, Advanced Materials, 13, 350(2001).
118. X. Lu, H. Gao, J. Chen, D. Chao, W. Zhang, Y. Wei, “Poly(acrylic acid)-guided synthesis of helical polyaniline/CdS composite microwires”, Nanotechnology, 16, 113(2005).