| 研究生: |
王士銘 Wang, Shih-Ming |
|---|---|
| 論文名稱: |
火害後梁柱接頭銲接區拉力實驗之研究 The Post-Fire Experiment of Steel Beam-to-Column Welded Joints Using Small-Scale Tension Specimens |
| 指導教授: |
鍾興陽
Chung, Hsin-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 火害後 、梁柱銲接接頭 、熱處理 、機械性質 |
| 外文關鍵詞: | Post-Fire, Beam-to-Column Welded Joint, Heat Treatment, Mechanical Property |
| 相關次數: | 點閱:156 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將實尺寸箱型柱與H型梁之梁柱銲接接頭,加工製作成小型之梁柱接頭十字試體來進行火害後的拉力實驗。製作試體所選用的鋼材為SN490B,而十字試體主要由柱內隔板、箱型柱翼板及H型梁翼板三部份銲接製作組成;除了對照組試體(未熱處理試體)以外,其餘製作好的試體將放入高溫爐中加熱至900℃後,再分別以「空氣冷卻」及「水中冷卻」來模擬梁柱銲接接頭火害後之兩種冷卻情形,本研究針對「未熱處理」、「空氣冷卻」和「水中冷卻」三組試體,分別進行標準拉伸試驗、硬度試驗和拉力實驗,透過以上試驗瞭解梁柱銲接接頭受火害後,鋼材機械性質與破壞模式的變化,梁柱接頭十字試體(柱翼板= 25 mm)拉力實驗的部分結果顯示:有背墊板全滲透銲接試體中,空氣冷卻試體之最大拉力減少5%,韌性參數提升3%,水中冷卻試體之最大拉力提升17%,韌性參數減少87%;無背墊板全滲透銲接試體中,空氣冷卻試體之最大拉力減少5%,韌性參數減少1%,水中冷卻試體之最大拉力提升71%,韌性參數減少26%。試體的破壞模式顯示:空氣冷卻試體均在梁翼板端斷裂,與未熱處理試體破壞模式類似;水中冷卻試體因水冷淬火的關係且銲材的碳含量比鋼材少,因此銲道中所形成的麻田散鐵組織其硬度值較梁翼板與柱內隔板為低,也造成銲道之抗拉強度較梁翼板與柱內隔板低,所以造成水中冷卻試體容易在梁翼板與柱內隔板銲接之FCAW銲道處斷裂。
This study made small-scale tension specimens from full-scale steel beam-to-column welded joints to perform post-fire tensile experiments. All the specimens were made by SN490B steel. A specimen was composed of a column diaphragm plate, a box-column flange plate and a H-beam flange plate, and the three steel plates were connected by welding. Except for the control group specimens (without heat treatment), the other specimens were heated to 900℃ and then were cooled down by “air cooling” and “water cooling” to simulate the two cooling situations for beam-to-column welded joints after fire. The three groups of specimens (i.e., control group, air-cooling group and water-cooling group) were all tested by standard tensile test, hardness test and tensile experiment to investigate the material property and failure mode variations. The tensile experiment results of some small-scale tension specimens (column flange thickness=25mm) are as follows. In the CJP welded specimens with backing bars, the maximum load decreased 5% and the toughness parameter increased 3% for the air-cooling specimens. For the water-cooling specimens, the maximum load increased 17% and the toughness parameter decreased 87%. In the CJP welded specimens without backing bars, the maximum load decreased 5% and the toughness parameter decreased 1% for the air-cooling specimens. For the water-cooling specimens, the maximum load increased 71% and the toughness parameter decreased 26%. The failure modes of small-scale tension specimens showed that the air-cooling specimens all fractured at the beam flange plates, which were similar to the specimens without heat treatment. For the water-cooling specimens, due to the water quenching and the lower carbon content in weld metal, the hardness value of martensite formed in the weld pass was lower than those of beam flange and column diaphragm plates. The tensile strength of the weld pass was also lower than those of beam flange and column diaphragm plates. As a result, water-cooling specimens usually fractured at the FCAW weld pass between beam flange plate and column diaphragm plate.
ASTM E140-07, “Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness,”(2007).
Bruneau, M., Uang, C.M. and Whittaker, A., Ductile Design of Steel Structures, McGraw-Hill,(1998).
Callister, W.D., Materials Science and Engineering an Introduction, John Wiley & Sons,(2000).
Chen, S.J., Yeh, C.H. and Chu, J.M., “Ductile Steel Beam-to-Column Connections for Seismic Resistance,” Journal of Structural Engineering, Vol. 122, No. 11, pp. 1292-1299,(1996).
Engelhardt, M.D., Winneberger, T., Zekany, A.J. and Potyraj, T.J., “Experimental Investigation of Dogbone Moment Connections,” Engineering Journal, Vol. 35, No. 4, pp. 128-139,(1998).
ISO 18265, “Metallic materials Conversion of hardness values,”(2003).
Kaufmann, E.J. and Fisher, J.W. “Fracture Analysis of Failed Moment Frame Weld Joints Produced in Full-Scale Laboratory Tests and Buildings Damaged in the Northridge Earthquake,” Technical Report SAC 95-08, pp. 1-1─1-21,(1995a).
Kaufmann, E.J. and Fisher, J.W., “A Study of the Effects of Materials and Welding Factors on Moment Frame Weld Joint Performance Using a Small-Scale Tension Specimen,” Technical Report SAC 95-08, pp. 2-1─2-29,(1995b).
Kuwamura, H., “Fracture of Steel Welded Joints Under Severe Earthquake Motion,” Proc. 11th WCEE, No. 466,(1996).
Poorhaydari-A, K., Patchett, B.M. and Ivey, D.G. “TEM Microstructure Examination of Weld HAZ in Microalloyed Steels,” Microscopy and Microanalysis, Vol. 8, Issue S02, pp. 1252-1253,(2002).
Smith, C.I., Kirby, B.R., Lapwood, D.G., Cole, K.J., Cunningham, A.P. and Preston, R.R., “The Reinstatement of Fire Damaged Steel Framed Structures,” Fire Safety Journal, Vol. 4, Issue 1, pp. 21-62,(1981).
Youssef, N.F.G., Bonowitz, D. and Gross, J.L., A Survey of Steel Moment-Resisting Frame Buildings Affected by the 1994 Northridge Earthquake, Report NISTIR 5625,(1995).
中國國家標準CNS總號2111,“金屬材料拉伸試驗法”,經濟部中央標準局,台灣(1996)。
中國國家標準CNS總號2112,“金屬材料拉伸試驗試片”,經濟部中央標準局,台灣(2005)。
中華民國材料科學學會,“鋼鐵材料手冊”,科技叢書(1998)。
中華民國結構工程學會,“鋼結構設計手冊(極限設計法)”,科技圖書股份有限公司(2005)。
方朝俊,“火害對耐火鋼構件銲接及栓接行為之影響”,國立台灣科技大學,台北(2000)。
林志宏,“火害後鋼鐵材料微巨觀行為探討”,國立台灣工業技術學院營建工程技術研究所,台北(1997)。
林克強、莊勝智、張福全、張柏彥,“台灣典型鋼梁與箱型柱採梁翼切削或梁翼加蓋板抗灣接頭之破壞模式”,鋼結構耐震設計與分析研討會論文集,國家地震中工程研究中心研究報告(NCREE-08-037),台南(2008)。
林群洲,“肋板補強鋼骨箱型柱梁柱接頭之耐震行為”,國立交通大學土木工程系,新竹(2002)。
周民瑜,“常見結構用鋼材火害後機械性質之研究”,國立成功大學土木工程系,台南(2008)。
陳純森,“鋼結構建築之梁柱接頭銜接方式探討”,鋼結構會刊第28期,中華民國鋼結構協會(2007)。
陳生金,“鋼結構之震害”,日本阪神大地震勘災訪問報告,中華民國建築學會,台北(1999)。