| 研究生: |
丘伊涵 Hew, Yee-Han |
|---|---|
| 論文名稱: |
實廠BioNET生物單元處理飲用水源中氨氮之效能評估與改善策略研究 Evaluation and Improvement of Full-scale BioNET Biological Treatment Unit for Ammonia Removal in Raw Water of Drinking Water |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 生物前處理 、硝化作用 、曝氣強度 、分子生物技術 |
| 外文關鍵詞: | biological pretreatment, nitrification, aeration intensity, real-time PCR, t-RFLP |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於作為鳳山淨水廠主要水源的高屏溪水量與水質問題日益嚴重,為尋求替代水源,自來水公司決議以東港溪作為其替代/備用水源,然而東港溪因氨氮濃度較高,根據水源水質標準無法直接做為自來水水源,故於2016年開始啟用生物前處理單元,藉由硝化作用將水中之氨氮轉化為硝酸鹽氮,再經由鳳山水庫自淨後,做為備用水源。本研究主要目標為監測實廠前處理單元之水質與微生物菌群,評估其硝化效率並探討其與微生物族群之關係,同時嘗試針對曝氣強度的最佳化與脫硝的可行性進行評估。不同初始食微比的批次結果顯示,比氨氧化速率隨初始食微比提高而提高,然而比硝酸生成速率的變化卻不明顯,推測與硝酸鹽氮於載體BioNET的吸脫附有關係。而在連續流試驗的過程中發現,實驗室規模的反應器因體積與曝氣設備的限制,無法完全模擬現場之狀況,然而結果顯示,曝氣強度與氧氣含量的降低皆會影響硝化效率;而在好氧/缺氧的得連續流試驗中,則發現脫硝的現象並不明顯,但在額外添加乙酸做為碳源之後,脫硝作用則明顯增強,顯示東港溪原水中之有機物可能不適合做為碳源供微生物利用。在分子生物技術之結果部分,real-time PCR 結果顯示氨氧化菌與亞硝氧化菌的含量與硝化效率有相關;而t-RFLP的結果也顯示族群在硝化效率降低時有所變化,影響其含量與族群變化之因素可能包括溫度的降低或是導電度的上升。
Since climate change and artificial pollution, the water quality and quantity is getting worse in Gaoping river which is the water source of Fengshan drinking water treatment plant. The Gaoping river has lower water quantity during winter time due to the low rainfall intensity and high turbidity eroded by typhoon during summer season. To solve this thorny issues, the government decided to search an alternative water source for Fengshan drinking water treatment plant, while Donggang river is considered because of its stable water quantity despite substandard ammonia concentration. In the case, a full-scale plant of biological treatment process with addition of BioNET, which aims to removal ammonia via biological nitrification, had been run since 2016. The objective of the research is to monitor the full-scale unit and evaluate the possibilities of optimization on aeration intensity and the potential of denitrification. Batch experiments under different initial substrate-to-biomass revealed that specific ammonia oxidation rate somehow followed Monod-type kinetic but specific nitrate production rate did not, which due probably to the adsorption/desorption mechanism between BioNET and bulk liquid. Continuous studies implied that reduction of aeration intensity could lead to unstable nitrification although results from lab-scale bioreactor could not fully represent the situation in full-scale unit. Denitrification was also observed during batches when dissolved oxygen was low or/and when adding acetate as additional organic matter. Results from real-time PCR revealed that nitrification efficiency in the pretreatment unit might be related to the abundances of AOB and NOB, while t-RFLP results indicate that there were population shifts in AOB when nitrification efficiency reduced due probably to temperature drop or increasing conductivity.
Abu Hasan, H., Sheikh Abdullah, S.R., Kamarudin, S.K., Tan Kofli, N., Anuar, N., 2013. Simultaneous NH 4 + -N and Mn2+ removal from drinking water using a biological aerated filter system: Effects of different aeration rates. Sep. Purif. Technol. 118, 547–556. https://doi.org/10.1016/j.seppur.2013.07.040
Ashkanani, A., Almomani, F., Khraisheh, M., Bhosale, R., Tawalbeh, M., AlJaml, K., 2019. Bio-carrier and operating temperature effect on ammonia removal from secondary wastewater effluents using moving bed biofilm reactor (MBBR). Sci. Total Environ. 693, 133425. https://doi.org/10.1016/j.scitotenv.2019.07.231
Bernet, N., Dangcong, P., Delgenès, J.P., Moletta, R., 2001. Nutrification of low oxygen concentration in biofilm reactor. J. Environ. Eng. 127, 266–272. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:3(266)
Bitton, G., 2005. Wastewater microbiology. John Wiley & Sons.
Bouwer, E.J., Crowe, P.B., 1988. Biological Processes in Drinking Water Treatment. J. Am. Water Works Assoc. 80, 82–93. https://doi.org/10.1002/j.1551-8833.1988.tb03103.x
Brandt, M.J., Johnson, K.M., Elphinston, A.J., Ratnayaka, D.D., Brandt, M.J., Johnson, K.M., Elphinston, A.J., Ratnayaka, D.D., 2017. Chapter 11 – Disinfection of Water, Twort’s Water Supply. https://doi.org/10.1016/B978-0-08-100025-0.00011-9
Cao, J., Zhang, T., Wu, Y., Sun, Y., Zhang, Y., Huang, B., Fu, B., Yang, E., Zhang, Q., Luo, J. 2020. Correlations of nitrogen removal and core functional genera in full-scale wastewater treatment plants: Influences of different treatment processes and influent characteristics. Bioresour Technol, 297, 122455.
Chen, H.H., Yeh, H.H., Shiau, S., 2005. The membrane application on the wastewater reclamation and reuse from the effluent of industrial WWTP in northern Taiwan. Desalination 185, 227–239. https://doi.org/10.1016/j.desal.2005.03.079
Cheng, H.-H., Lu, I.C., Huang, P.-W., Wu, Y.-J., Whang, L.-M. 2021. Biological treatment of volatile organic compounds (VOCs)-containing wastewaters from wet scrubbers in semiconductor industry. Chemosphere, 282.
Cheng, Q., Nengzi, L., Bao, L., Huang, Y., Liu, S., Cheng, X., Li, B., Zhang, J., 2017. Distribution and genetic diversity of microbial populations in the pilot-scale biofilter for simultaneous removal of ammonia, iron and manganese from real groundwater. Chemosphere 182, 450–457. https://doi.org/10.1016/j.chemosphere.2017.05.075
Chu, W., Gao, N., Deng, Y., Templeton, M.R., Yin, D., 2011. Impacts of drinking water pretreatments on the formation of nitrogenous disinfection by-products. Bioresour. Technol. 102, 11161–11166. https://doi.org/10.1016/j.biortech.2011.09.109
Costa, E., Pérez, J., Kreft, J.U., 2006. Why is metabolic labour divided in nitrification? Trends Microbiol. 14, 213–219. https://doi.org/10.1016/j.tim.2006.03.006
De Vrieze, J., Regueiro, L., Props, R., Vilchez-Vargas, R., Jauregui, R., Pieper, D.H., Lema, J.M., Carballa, M. 2016. Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion. Biotechnol Biofuels, 9, 244.
Di Capua, F., Pirozzi, F., Lens, P.N.L., Esposito, G., 2019. Electron donors for autotrophic denitrification. Chem. Eng. J. 362, 922–937. https://doi.org/10.1016/j.cej.2019.01.069
Di Marcantonio, C., Bertelkamp, C., van Bel, N., Pronk, T.E., Timmers, P.H.A., van der Wielen, P., Brunner, A.M. 2020. Organic micropollutant removal in full-scale rapid sand filters used for drinking water treatment in The Netherlands and Belgium. Chemosphere, 260, 127630.
Dong, W. yi, Wang, H. jie, Li, W. guang, Ying, W. chao, Gan, G. hua, Yang, Y., 2009. Effect of DO on simultaneous removal of carbon and nitrogen by a membrane aeration/filtration combined bioreactor. J. Memb. Sci. 344, 219–224. https://doi.org/10.1016/j.memsci.2009.08.007
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. in: Bioinformatics, Vol. 27, pp. 2194-2200.
Ettwig, K.F., VanAlen, T., Van DePas-Schoonen, K.T., Jetten, M.S.M., Strous, M., 2009. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl. Environ. Microbiol. 75, 3656–3662. https://doi.org/10.1128/AEM.00067-09
Feng, Y., Yu, Y., Duan, Q., Tan, J., Zhao, C., 2010. The characteristic research of ammonium removal in grain-slag biological aerated filter (BAF). Desalination 263, 146–150. https://doi.org/10.1016/j.desal.2010.06.051
Fitzgerald, C.M., Camejo, P., Oshlag, J.Z., Noguera, D.R., 2015. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen. Water Res. 70, 38–51. https://doi.org/10.1016/j.watres.2014.11.041
Fukushima, T., Wu, Y.J., Whang, L.M., 2012. The influence of salinity and ammonium levels on amoA mRNA expression of ammonia-oxidizing prokaryotes. Water Sci. Technol. 65, 2228–2235. https://doi.org/10.2166/wst.2012.142
Grady Jr, C.P.L., Daigger, G.T., Love, N.G., Filipe, C.D.M., 2011. Biological wastewater treatment. CRC press.
Grunditz, C., Dalhammar, G., 2001. Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water Res. 35, 433–440. https://doi.org/10.1016/S0043-1354(00)00312-2
Han, D.W., Yun, H.J., Kim, D.J., 2001. Autotrophic nitrification and denitrification characteristics of an upflow biological aerated filter. J. Chem. Technol. Biotechnol. 76, 1112–1116. https://doi.org/10.1002/jctb.499
Hasan, H.A., Abdullah, S.R.S., Kamarudin, S.K., Kofli, N.T., 2011. Response surface methodology for optimization of simultaneous COD, NH4+-N and Mn2+ removal from drinking water by biological aerated filter. Desalination 275, 50–61. https://doi.org/10.1016/j.desal.2011.02.028
Hem, L.J., Rusten, B., Ødegaard, H., 1994. Nitrification in a moving bed biofilm reactor. Water Res. 28, 1425–1433. https://doi.org/10.1016/0043-1354(94)90310-7
Hibiya, K., Terada, A., Tsuneda, S., Hirata, A., 2003. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. J. Biotechnol. 100, 23–32. https://doi.org/10.1016/S0168-1656(02)00227-4
Hoang, V., Delatolla, R., Abujamel, T., Mottawea, W., Gadbois, A., Laflamme, E., Stintzi, A., 2014. Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1°C. Water Res. 49, 215–224. https://doi.org/10.1016/j.watres.2013.11.018
Horng, R.-Y., Chang, W., Chang, M., Tzou, W., Peng, M., 2005. Method for treating wastewater/water with fixed-film microorganism on porous carriers.
Hu, S., Zeng, R.J., Burow, L.C., Lant, P., Keller, J., Yuan, Z., 2009. Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ. Microbiol. Rep. 1, 377–384. https://doi.org/10.1111/j.1758-2229.2009.00083.x
Huysman, P., VanMeenen, P., VanAssche, P., Verstraete, W., 1983. Factors affecting the colonization of non porous and porous packing materials in model upflow methane reactors. Biotechnol. Lett. 5, 643–648. https://doi.org/10.1007/BF00130849
Kasuga, I., Shimazaki, D., Kunikane, S. 2007. Influence of backwashing on the microbial community in a biofilm developed on biological activated carbon used in a drinking water treatment plant. Water Sci Technol, 55(8-9), 173-80.
Lawson, C.E., Lücker, S., 2018. Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Curr. Opin. Biotechnol. 50, 158–165. https://doi.org/10.1016/j.copbio.2018.01.015
Lee, Y.C., Whang, L.M., Ngo, M.H., Chen, T.H., Cheng, H.H., 2016. Acute toxicity assessment of TFT-LCD wastewater using Daphnia similis and Cyprinus carpio. Process Saf. Environ. Prot. https://doi.org/10.1016/j.psep.2016.03.003
Li, X., Chu, H.P., 2003. Membrane bioreactor for the drinking water treatment of polluted surface water supplies. Water Res. 37, 4781–4791.
Madigan, M.T., Martinko, J.M., Parker, J., 2018. Brock biology of microorganisms, 15th ed. Pearson, Boston.
Magoč, T., Salzberg, S.L. 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. in: Bioinformatics, Vol. 27, pp. 2957-2963.
Nagymate, Z., Homonnay, Z.G., Marialigeti, K. 2016. Investigation of Archaeal and Bacterial community structure of five different small drinking water networks with special regard to the nitrifying microorganisms. Microbiol Res, 188-189, 80-89.
Nogueira, R., Melo, L.F. 2006. Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors. Biotechnol Bioeng, 95(1), 169-75.
Ødegaard, H., 2006. Innovations in wastewater treatment: The moving bed biofilm process. Water Sci. Technol. 53, 17–33. https://doi.org/10.2166/wst.2006.284
Pressley, T.A., Bishop, D.F., Roan, S.G., 1972. Ammonia-Nitrogen Removai by Breakpoint Chlorination. Environ. Sci. Technol. 6, 622–628. https://doi.org/10.1021/es60066a006
Qin, Y.Y., Li, D.T., Yang, H., 2007. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China. FEMS Microbiol. Lett. 268, 126–134. https://doi.org/10.1111/j.1574-6968.2006.00571.x
Raghoebarsing, A.A., Pol, A., Van DePas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Sinninghe Damsté, J.S., Op Den Camp, H.J.M., Jetten, M.S.M., Strous, M., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921. https://doi.org/10.1038/nature04617
Regan, J.M., Harrington, G.W., Noguera, D.R., 2002. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Appl. Environ. Microbiol. 68, 73–81. https://doi.org/10.1128/AEM.68.1.73-81.2002
Rusten, B., Eikebrokk, B., Ulgenes, Y., Lygren, E., 2006. Design and operations of the Kaldnes moving bed biofilm reactors. Aquac. Eng. 34, 322–331. https://doi.org/10.1016/j.aquaeng.2005.04.002
Rusten, B., McCoy, M., Proctor, R., Siljudalen, J.G., 1998. The innovative moving bed biofilm reactor/solids contact reaeration process for secondary treatment of municipal wastewater. Water Environ. Res. 70, 1083–1089. https://doi.org/10.2175/106143098x123435
Sawyer, C.N., McCarty, P.L., Parkin, G.F., 2003. Chemistry for environmental engineering and science. McGraw-Hill New York.
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., Weber, C.F. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. in: Applied and Environmental Microbiology, Vol. 75, pp. 7537-7541.
Shin, J.H., Sang, B.I., Chung, Y.C., Choung, Y. kyoo, 2008. A novel CSTR-type of hollow fiber membrane biofilm reactor for consecutive nitrification and denitrification. Desalination 221, 526–533. https://doi.org/10.1016/j.desal.2007.01.113
Suprihatin, S., Cahyaputri, B., Romli, M., Yani, M., 2017. Use of biofilter as pre-treatment of polluted river water for drinking water supply. Environ. Eng. Res. 22, 203–209. https://doi.org/10.4491/eer.2016.110
van der Zaan, B.M., Saia, F.T., Stams, A.J., Plugge, C.M., de Vos, W.M., Smidt, H., Langenhoff, A.A., Gerritse, J. 2012. Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. Environ Microbiol, 14(5), 1171-81.
Wang, R.C., Wen, X.H., Qian, Y., 2005. Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochem. 40, 2992–3001. https://doi.org/10.1016/j.procbio.2005.02.024
Wang, Z., Yao, Y., Steiner, N., Cheng, H.-H., Wu, Y., Woo, S.-G., Criddle, C.S., 2020. Impacts of nitrogen-containing coagulants on the nitritation/denitrification of anaerobic digester centrate. Environ. Sci. Water Res. Technol. 6, 3451–3459. https://doi.org/10.1039/d0ew00938e
Wen, J., LeChevallier, M.W., Tao, W. 2020. Nitrification kinetics and microbial communities of activated sludge as a full-scale membrane bioreactor plant transitioned to low dissolved oxygen operation. Journal of Cleaner Production, 252.
Willey, J.M., Sherwood, L., Woolverton, C.J., 2008. Prescott, Harley, and Klein’s microbiology, 7th ed. ed. McGraw-Hill Higher Education.
Wu, Y.J., Liu, Y.W., Cheng, H.H., Ke, C.W., Lin, T.F., Whang, L.M., 2021. Biological pre-treatment system for ammonia removal from slightly contaminated river used as a drinking water source. Process Saf. Environ. Prot. 147, 385–391. https://doi.org/10.1016/j.psep.2020.09.042
Wu, Y.J., Whang, L.M., Fukushima, T., Chang, S.H., 2013. Responses of ammonia-oxidizing archaeal and betaproteobacterial populations to wastewater salinity in a full-scale municipal wastewater treatment plant. J. Biosci. Bioeng. 115, 424–432. https://doi.org/10.1016/j.jbiosc.2012.11.005
Wu, Y.J., Whang, L.M., Fukushima, T., Huang, Y.J., 2020. Abundance, community structures, and nitrification inhibition on ammonia-oxidizing archaea enriched under high and low salinity. Int. Biodeterior. Biodegrad. 153. https://doi.org/10.1016/j.ibiod.2020.105040
Xia, Z., Wang, Q., She, Z., Gao, M., Zhao, Y., Guo, L., Jin, C. 2019. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. in: Science of the Total Environment, Vol. 697, Elsevier B.V., pp. 134047.
Xie, S.G., Tang, X.Y., Wu, W.Z., Wen, D.H., Wang, Z.S., 2005. Biological pretreatment of Yellow River water. J. Environ. Sci. 17, 557–561.
Yang, J., Zhao, L., 2008. Wastewater treatment performance of earthworm biofilter with filter media of quartz sand and ceramic pellet. 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008 3031–3034. https://doi.org/10.1109/ICBBE.2008.1089
Yao, Y., Wang, Z., Criddle, C.S., 2021. Robust Nitritation of Anaerobic Digester Centrate Using Dual Stressors and Timed Alkali Additions. Environ. Sci. Technol. 55, 2016–2026. https://doi.org/10.1021/acs.est.0c04613
You, Q.G., Wang, J.H., Qi, G.X., Zhou, Y.M., Guo, Z.W., Shen, Y., Gao, X., 2020. Anammox and partial denitrification coupling: A review. RSC Adv. 10, 12554–12572. https://doi.org/10.1039/d0ra00001a
Zhang, T., Wang, B., Li, X., Zhang, Q., Wu, L., He, Y., Peng, Y. 2018. Achieving partial nitrification in a continuous post-denitrification reactor treating low C/N sewage. Chemical Engineering Journal, 335, 330-337.
Zhang, S., Wang, Y., He, W., Wu, M., Xing, M., Yang, J., Gao, N., Pan, M., 2014. Impacts of temperature and nitrifying community on nitrification kinetics in a moving-bed biofilm reactor treating polluted raw water. Chem. Eng. J. 236, 242–250. https://doi.org/10.1016/j.cej.2013.09.086
Zhang, S., Wang, Y., He, W., Xing, M., Wu, M., Yang, J., Gao, N., Sheng, G., Yin, D., Liu, S., 2013. Linking nitrifying biofilm characteristics and nitrification performance in moving-bed biofilm reactors for polluted raw water pretreatment. Bioresour. Technol. 146, 416–425. https://doi.org/10.1016/j.biortech.2013.07.056
Zhu, S., Chen, S., 2002. The impact of temperature on nitrification rate in fixed film biofilters. Aquac. Eng. 26, 221–237. https://doi.org/10.1016/S0144-8609(02)00022-5
校內:2026-08-25公開