簡易檢索 / 詳目顯示

研究生: 洪啓祐
Hung, Chi-Yu
論文名稱: 探討利用液滴微流體合成金屬有機框架
Investigation of synthesis of metal-organic frameworks using droplet microfluidics
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 金屬有機框架液滴微流體晶片PCN-222N,N-二乙基甲醯胺 (DEF)矽油
外文關鍵詞: metal-organic frameworks(MOFs), droplet-based microfluidics, PCN-222, N,N’- Diethylformamide, silicone oil
相關次數: 點閱:152下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究利用液滴微流體晶片,產生含有金屬有機框架反應物的微小液滴,並利用此微小液滴加熱進行反應,建立了液滴微流道輔助合成金屬有機框架(MOFs)的操作平台。以傳統溶劑熱法合成金屬有機框架PCN-222,會得到數十微米大小的柱狀結晶,而利用微流道輔助的系統在適當的條件下能夠有效限制PCN-222顆粒的長度至3~4微米。
    關於液滴著產生,由實驗結果顯示,當連續相分散相流量比值越大,則產出的液滴大小越大。若分散相為含水率13.92 wt % 的反應物溶液,使用黏度較大的矽油AP150 Wacker 能夠生成200~310 μm的液滴;而黏度較小的矽油20 cSt可以生成330~1460 μm 的液滴。利用液滴大小為180~310 μm進行合成MOFs時,PCN-222的顆粒長度約為4 μm。然而當液滴大小大於480 μm 時,微流道輔助與無微流道輔助(亦即傳統方法)顆粒大小相近。我們也透過傳統批次合成探討在反應物溶液(DEF)中加入水對於顆粒的影響,發現顆粒長度與含水量之間並無明顯關係,但是當含水率大於17.73 wt%時,顆粒之長度分布較廣。

    In this study, a passive droplet-based microfluidic platform for synthesis of metal-organic frameworks (MOFs) was developed. For conventional synthesis of PCN-222, one of zirconium-based porphyrinic MOFs, the length of the particles is around 14 μm. To utilize the droplet-based microfluidics, the femtoliter to nanoliter droplets which consist of precursors and solvent were generated. It is found that increasing the ratio of continuous phase (CP) / dispersed phase (DP) would increase the droplet size. Using silicone oil AP150 Wacker as the continuous phase, 200~310 μm droplets were generated; However. using less viscous silicone oil 20 cSt as the continuous phase, 330~1460 μm droplets were generated. When the droplet size 180-310 μm was used, the particle size of PCN-222 is about 4 μm, which is much smaller than that of particles produced by the conventional batch process. As the droplet size increased larger than 480 μm, the particle size was Compared to that generated by the batch process. Adding water to the reactant solution (N,N’- Diethylformamide, DEF) did not affect the particle size. However, as the water content is greater than 17.73%, wider distribution of particle size was obtained.

    目錄 摘要 ii Extended Abstract iii 致謝 viii 目錄 ix 表目錄 xii 圖目錄 xiii 第1章 緒論 1 1.1 金屬有機框架簡介 1 1.2 微流體系統簡介 1 1.3 研究動機以及目的 3 第2章 文獻回顧 4 2.1 金屬有機框架 Metal-Organic Frameworks (MOFs) 4 2.1.1 金屬有機框架的合成方法 5 2.1.2 金屬有機框架結晶的原理及影響 6 2.1.3 Zr-based 金屬有機框架 8 2.1.4 PCN-222的介紹及應用 10 2.2 液滴微流體系統 11 2.2.1 產生液滴的方法與條件 12 2.2.2 液滴微流體的應用 18 2.2.3 液滴微流體作為反應系統 19 2.2.4 用液滴微流體產生Metal organic Frameworks (MOFs) 21 第3章 材料與實驗方法 23 3.1 實驗材料 23 3.1.1 黃光微影製程 23 3.1.2 微流道平台 25 3.1.3 傳統PCN-222合成 28 3.2 實驗儀器 31 3.2.1 黃光微影製程 31 3.2.2 微流道晶片製作 33 3.2.3 傳統PCN-222合成 34 3.2.4 液滴微流體系統合成PCN-222 35 3.3 實驗方法 36 3.3.1 黃光微影製程 36 3.3.2 微流道晶片製作 42 3.3.3 傳統PCN-222合成 43 3.3.4 液滴微流體系統合成PCN-222 43 3.4 數據分析 44 3.4.1 液滴大小分析 44 3.4.2 SEM、SEM結晶長度分析 45 第4章 結果與討論 46 4.1 液滴的形成 46 4.1.1 流量的影響 46 4.1.2 連續相黏度的影響 60 4.2 液滴微流體輔助合成MOFs 62 4.2.1 液滴大小對顆粒的影響 62 4.2.2 含水率對顆粒的影響 67 4.2.3 加熱時間對顆粒的影響 70 第5章 結論與未來工作 73 5.1 結論 73 5.2 未來工作 74 參考文獻 75   表目錄 表格 1 SU-8 2025 旋轉塗佈參數 39 表格 2 SU-8 2025 軟烤參數 40 表格 3 SU-8 2025 曝光參數 40 表格 4 SU-8 2025 曝後烤參數 41 表格 5 SU-8 2025硬烤參數 41 表格 6 氧電漿清潔機操作參數 42 表格 7 溶劑物性表@25℃ [54] 47   圖目錄 圖 1.1 A LAB-ON-A-CHIP 示意圖[18] 2 圖 2.1 控制晶體成長的方法 [22] 7 圖 2.2 (A) 單一晶格的銅當作比例尺 (B) UIO-66 (C) UIO-67 (D) UIO-68。鋯原子為紅色、氧原子為藍色、碳原子為灰色、氫原子為白色[38] 8 圖 2.3 PCN-222(FE)的晶體結構 (A) FE-TCPP,藍色正方形 (B) ZR6團簇 (D,E)由(C)單一細管組合成3D立體結構[5] 9 圖 2.4 SEM圖像 (A) NU-902 (B) MOF-525 (C) PCN-222 ;(D) PXRD圖 (E) 1H NMR圖譜[6] 10 圖 2.5 兩水溶液的層流流動[43] 11 圖 2.6 可用於翻模的製程比較 [44] 13 圖 2.7 不同的流動形式示意圖(A) 同軸 (B) 流體聚焦 (C) T字型 [45] 14 圖 2.9 流道示意圖,寬度為H;虛線箭頭為L2、實線箭頭為連續相 15 圖 2.10 兩相CA對於流動形式的影響: (A) THREADING(●), (B) JETTING(▲), (C) DRIPPING(■), (D) TUBING(◆), (E)VISCOUS DISPLACEMENT [48] 15 圖 2.11 正規化後的JETTING液滴大小D/H VS 流速比Ψ= Q1/Q2 16 圖 2.12 標準化後的液滴長度D/H VS Α2CA2 17 圖 2.13 流道壁的接觸角對於氣-液相流動行為的影響 17 圖 2.14 DROP-SEQ單細胞分析 18 圖 2.15 利用微反應系統產生POLYTPGDA SEM圖[4] 19 圖 2.16 液滴微流體裝置作為反應器[52] 20 圖 2.17 分段微流體合成MOFS裝置 21 圖 2.18 使用PDMS、PFA管、PEEK製作微流道示意圖[53] 22 圖 3.1 旋轉塗佈機 31 圖 3.2 UV雙面對準光感奈米壓印機 32 圖 3.3 微量電子天平 33 圖 3.4 真空幫浦 34 圖 3.5 突擴為700 UM的流道光罩設計圖 37 圖 3.6 突擴為700 UM流動聚焦局部放大圖 38 圖 4.1 兩相CA對於流動形式的影響: (A) THREADING(●), (B) JETTING(▲), (C) DRIPPING(■) (D) TUBING(◆), (E)VISCOUS DISPLACEMENT。Y軸為分散相CA,X軸為連續相CA[48] 47 圖 4.2 標準化後的液滴長度D/H 與 Α2CA2 之間的關係 [48] 48 圖 4.3 液滴在顯微鏡下之流動情形。連續相:矽油AP150 WACKER、分散相:DEF溶液 (13.9 WT %水)、QD = 0.1 ML/HR 50 圖 4.4 QC/QD對液滴大小的影響。連續相:矽油AP150 WACKER、分散相:DEF溶液 (13.9 WT %水)、QD = 0.1 ML/HR 51 圖 4.5 QC/QD對液滴大小的影響取對數關係。連續相:矽油AP150 WACKER、分散相:DEF溶液 (13.9 WT %水)、QD = 0.1 ML/HR 51 圖 4.6 液滴在顯微鏡下之流動情形。連續相:矽油AP150 WACKER、分散相:DEF溶液 (9.73 WT %水)、QD = 0.1 ML/HR 53 圖 4.7 QC/QD對液滴大小的影響。連續相:矽油AP150 WACKER、分散相:DEF溶液 (9.73 WT %水)、QD = 0.1 ML/HR 54 圖 4.8 QD/QC對液滴大小取對數關係。連續相:矽油AP150 WACKER、分散相:DEF溶液 (9.73 WT %水)、QD = 0.1 ML/HR 54 圖 4.9 不同含水量對液滴大小之影響,連續相:AP150 WACKER、分散相:DEF 溶液(不同含水量)、QD = 0.1 ML/HR 55 圖 4.10 標準化後的液滴長度D/H 與 Α2CA2 之間的關係 [48] 56 圖 4.11 QD = 0.1 ML/HR時,於顯微鏡下觀察流動情形。連續相:矽油20 CST、分散相:DEF溶液 (9.73 WT %水) 57 圖 4.12 QD = 0.2 ML/HR時,於顯微鏡下觀察流動情形。連續相:矽油20 CST、分散相:DEF溶液 (9.73 WT %水) 58 圖 4.13 QC/QD與液滴大小的關係。連續相:矽油20 CST、分散相:DEF溶液 (9.73 WT %水) 59 圖 4.14 QC/QD與液滴大小取對數關係。連續相:矽油20 CST、分散相:DEF溶液 (9.73 WT %水)、QD = 0.1 ML/HR 59 圖 4.15 QC/QD與液滴大小取對數關係。連續相:矽油20 CST、分散相:DEF溶液 (9.73 WT %水)、QD = 0.2 ML/HR 60 圖 4.16 不同連續相成分對液滴大小的影響 61 圖 4.17液滴大小181.67 ~ 309.31ΜM產物之SEM圖 63 圖 4.18 液滴大小480.85, 615.50 ΜM及無微流道輔助批次合成產物之SEM圖 64 圖 4.19 經微流道輔助,液滴大小309.31 ΜM之 XRD 圖 65 圖 4.20 經微流道輔助,液滴大小480 ΜM以及BATCH 之 XRD 圖 65 圖 4.21液滴大小對顆粒大小的影響 66 圖 4.22 傳統溶劑熱法批次反應含水率的9.73 WT%、 13.92 WT%之SEM、XRD圖譜 67 圖 4.23 傳統溶劑熱法批次反應含水率的17.73 WT%、21.22 WT%、24.43 WT% 之SEM、21.22 WT%之XRD圖譜 68 圖 4.24 無微流道輔助(傳統溶劑熱法批次)合成中含水率對於PCN-222顆粒大小的影響 69 圖 4.25 不同加熱時間的SEM圖 70 圖 4.26 加熱一天之XRD圖譜 71 圖 4.27 加熱時間對結晶長度的影響 72

    1. Batten, S.R., et al., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry, 2013. 85(8): p. 1715-1724.
    2. Burtch, N.C., H. Jasuja, and K.S. Walton, Water stability and adsorption in metal–organic frameworks. Chemical reviews, 2014. 114(20): p. 10575-10612.
    3. Gomes Silva, C., et al., Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry–A European Journal, 2010. 16(36): p. 11133-11138.
    4. Seo, M., et al., Continuous microfluidic reactors for polymer particles. Langmuir, 2005. 21(25): p. 11614-11622.
    5. Feng, D., et al., Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed Engl, 2012. 51(41): p. 10307-10.
    6. Deria, P., et al., Framework-topology-dependent catalytic activity of zirconium-based (porphinato) zinc (II) MOFs. Journal of the American Chemical Society, 2016. 138(43): p. 14449-14457.
    7. Li, H., et al., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. nature, 1999. 402(6759): p. 276-279.
    8. Lee, J., et al., Metal–organic framework materials as catalysts. Chemical Society Reviews, 2009. 38(5): p. 1450-1459.
    9. Li, L., et al., High gas storage capacities and stepwise adsorption in a UiO type metal–organic framework incorporating Lewis basic bipyridyl sites. Chemical Communications, 2014. 50(18): p. 2304-2307.
    10. Cacho-Bailo, F., et al., High selectivity ZIF-93 hollow fiber membranes for gas separation. Chemical Communications, 2015. 51(56): p. 11283-11285.
    11. Paseta, L., et al., Accelerating the controlled synthesis of metal-organic frameworks by a microfluidic approach: a nanoliter continuous reactor. ACS Appl Mater Interfaces, 2013. 5(19): p. 9405-10.
    12. Bassous, E., H. Taub, and L. Kuhn, Ink jet printing nozzle arrays etched in silicon. Applied Physics Letters, 1977. 31(2): p. 135-137.
    13. Terry, S.C., J.H. Jerman, and J.B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE transactions on electron devices, 1979. 26(12): p. 1880-1886.
    14. Teh, S.-Y., et al., Droplet microfluidics. Lab on a Chip, 2008. 8(2): p. 198-220.
    15. Li, X., D.R. Ballerini, and W. Shen, A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 2012. 6(1): p. 011301.
    16. Ding, X., et al., Surface acoustic wave microfluidics. Lab on a Chip, 2013. 13(18): p. 3626-3649.
    17. McNeely, M.R., et al. Hydrophobic microfluidics. in Microfluidic Devices and Systems II. 1999. International Society for Optics and Photonics.
    18. Figeys, D. and D. Pinto, Lab-on-a-chip: a revolution in biological and medical sciences. 2000, ACS Publications.
    19. Demello, A.J., Control and detection of chemical reactions in microfluidic systems. Nature, 2006. 442(7101): p. 394-402.
    20. Chan, E.M., A.P. Alivisatos, and R.A. Mathies, High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. Journal of the American Chemical Society, 2005. 127(40): p. 13854-13861.
    21. Rowsell, J.L.C. and O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 2004. 73(1-2): p. 3-14.
    22. Stock, N. and S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev, 2012. 112(2): p. 933-69.
    23. Seth, S.K., Tuning the formation of MOFs by pH influence: X-ray structural variations and Hirshfeld surface analyses of 2-amino-5-nitropyridine with cadmium chloride. CrystEngComm, 2013. 15(9): p. 1772-1781.
    24. Rabenau, A., The role of hydrothermal synthesis in preparative chemistry. Angewandte Chemie International Edition in English, 1985. 24(12): p. 1026-1040.
    25. Chen, H., et al., Advances in properties and manufacturing of chromium dioxide. IEEE Transactions on Magnetics, 1984. 20(1): p. 24-26.
    26. Eddaoudi, M., et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002. 295(5554): p. 469-472.
    27. Banerjee, R., et al., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008. 319(5865): p. 939-943.
    28. Suslick, K.S., D.A. Hammerton, and R.E. Cline, Sonochemical hot spot. Journal of the American Chemical Society, 1986. 108(18): p. 5641-5642.
    29. Son, W.-J., et al., Sonochemical synthesis of MOF-5. Chemical Communications, 2008(47): p. 6336-6338.
    30. Ni, Z. and R.I. Masel, Rapid production of metal− organic frameworks via microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2006. 128(38): p. 12394-12395.
    31. Di Renzo, F., Zeolites as tailor-made catalysts: control of the crystal size. Catalysis today, 1998. 41(1-3): p. 37-40.
    32. Shekhah, O., et al., MOF thin films: existing and future applications. Chemical Society Reviews, 2011. 40(2): p. 1081-1106.
    33. Zacher, D., et al., Thin films of metal–organic frameworks. Chemical Society Reviews, 2009. 38(5): p. 1418-1429.
    34. Davis, M.E., Z. Chen, and D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer, in Nanoscience and technology: A collection of reviews from nature journals. 2010, World Scientific. p. 239-250.
    35. Song, Y., et al., Ratiometric electrochemical glucose biosensor based on GOD/AuNPs/Cu-BTC MOFs/macroporous carbon integrated electrode. Sensors and Actuators B: Chemical, 2018. 257: p. 792-799.
    36. Huang, L., et al., Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and mesoporous materials, 2003. 58(2): p. 105-114.
    37. Li, X., et al., Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O (1, 3, 5-benzenetribenzoate) 2. Journal of power sources, 2006. 160(1): p. 542-547.
    38. Cavka, J.H., et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
    39. Morris, W., et al., Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorganic chemistry, 2012. 51(12): p. 6443-6445.
    40. Ling, P., J. Lei, and H. Ju, Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch. Biosens Bioelectron, 2015. 71: p. 373-379.
    41. Zhang, G.Y., et al., Zirconium-Based Porphyrinic Metal-Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection. Anal Chem, 2016. 88(22): p. 11207-11212.
    42. Leng, X., et al., Zirconium-Porphyrin PCN-222: pH-responsive Controlled Anticancer Drug Oridonin. Evidence-Based Complementary and Alternative Medicine, 2018. 2018.
    43. Choban, E.R., et al., Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 2004. 128(1): p. 54-60.
    44. Sollier, E., et al., Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab on a Chip, 2011. 11(22): p. 3752-3765.
    45. Nunes, J.K., et al., Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. J Phys D Appl Phys, 2013. 46(11).
    46. Anna, S.L., N. Bontoux, and H.A. Stone, Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 2003. 82(3): p. 364-366.
    47. Stone, H.A. and S. Kim, Microfluidics: basic issues, applications, and challenges. AIChE Journal, 2001. 47(6): p. 1250-1254.
    48. Cubaud, T. and T.G. Mason, Capillary threads and viscous droplets in square microchannels. Physics of Fluids, 2008. 20(5).
    49. Cubaud, T., U. Ulmanella, and C.-M. Ho, Two-phase flow in microchannels with surface modifications. Fluid Dynamics Research, 2006. 38(11): p. 772.
    50. Macosko, E.Z., et al., Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 2015. 161(5): p. 1202-1214.
    51. Jeon, J., et al., SERS-based droplet microfluidics for high-throughput gradient analysis. Lab on a Chip, 2019. 19(4): p. 674-681.
    52. Nightingale, A., et al., A stable droplet reactor for high temperature nanocrystal synthesis. Lab on a Chip, 2011. 11(7): p. 1221-1227.
    53. Faustini, M., et al., Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets. Journal of the American Chemical Society, 2013. 135(39): p. 14619-14626.
    54. Assarsson, P. and F. Eirich, Properties of amides in aqueous solution. I. Viscosity and density changes of amide-water systems. An analysis of volume deficiencies of mixtures based on molecular size differences (mixing of hard spheres). The Journal of Physical Chemistry, 1968. 72(8): p. 2710-2719.

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE