| 研究生: |
洪啓祐 Hung, Chi-Yu |
|---|---|
| 論文名稱: |
探討利用液滴微流體合成金屬有機框架 Investigation of synthesis of metal-organic frameworks using droplet microfluidics |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 金屬有機框架 、液滴微流體晶片 、PCN-222 、N,N-二乙基甲醯胺 (DEF) 、矽油 |
| 外文關鍵詞: | metal-organic frameworks(MOFs), droplet-based microfluidics, PCN-222, N,N’- Diethylformamide, silicone oil |
| 相關次數: | 點閱:152 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究利用液滴微流體晶片,產生含有金屬有機框架反應物的微小液滴,並利用此微小液滴加熱進行反應,建立了液滴微流道輔助合成金屬有機框架(MOFs)的操作平台。以傳統溶劑熱法合成金屬有機框架PCN-222,會得到數十微米大小的柱狀結晶,而利用微流道輔助的系統在適當的條件下能夠有效限制PCN-222顆粒的長度至3~4微米。
關於液滴著產生,由實驗結果顯示,當連續相分散相流量比值越大,則產出的液滴大小越大。若分散相為含水率13.92 wt % 的反應物溶液,使用黏度較大的矽油AP150 Wacker 能夠生成200~310 μm的液滴;而黏度較小的矽油20 cSt可以生成330~1460 μm 的液滴。利用液滴大小為180~310 μm進行合成MOFs時,PCN-222的顆粒長度約為4 μm。然而當液滴大小大於480 μm 時,微流道輔助與無微流道輔助(亦即傳統方法)顆粒大小相近。我們也透過傳統批次合成探討在反應物溶液(DEF)中加入水對於顆粒的影響,發現顆粒長度與含水量之間並無明顯關係,但是當含水率大於17.73 wt%時,顆粒之長度分布較廣。
In this study, a passive droplet-based microfluidic platform for synthesis of metal-organic frameworks (MOFs) was developed. For conventional synthesis of PCN-222, one of zirconium-based porphyrinic MOFs, the length of the particles is around 14 μm. To utilize the droplet-based microfluidics, the femtoliter to nanoliter droplets which consist of precursors and solvent were generated. It is found that increasing the ratio of continuous phase (CP) / dispersed phase (DP) would increase the droplet size. Using silicone oil AP150 Wacker as the continuous phase, 200~310 μm droplets were generated; However. using less viscous silicone oil 20 cSt as the continuous phase, 330~1460 μm droplets were generated. When the droplet size 180-310 μm was used, the particle size of PCN-222 is about 4 μm, which is much smaller than that of particles produced by the conventional batch process. As the droplet size increased larger than 480 μm, the particle size was Compared to that generated by the batch process. Adding water to the reactant solution (N,N’- Diethylformamide, DEF) did not affect the particle size. However, as the water content is greater than 17.73%, wider distribution of particle size was obtained.
1. Batten, S.R., et al., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry, 2013. 85(8): p. 1715-1724.
2. Burtch, N.C., H. Jasuja, and K.S. Walton, Water stability and adsorption in metal–organic frameworks. Chemical reviews, 2014. 114(20): p. 10575-10612.
3. Gomes Silva, C., et al., Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry–A European Journal, 2010. 16(36): p. 11133-11138.
4. Seo, M., et al., Continuous microfluidic reactors for polymer particles. Langmuir, 2005. 21(25): p. 11614-11622.
5. Feng, D., et al., Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed Engl, 2012. 51(41): p. 10307-10.
6. Deria, P., et al., Framework-topology-dependent catalytic activity of zirconium-based (porphinato) zinc (II) MOFs. Journal of the American Chemical Society, 2016. 138(43): p. 14449-14457.
7. Li, H., et al., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. nature, 1999. 402(6759): p. 276-279.
8. Lee, J., et al., Metal–organic framework materials as catalysts. Chemical Society Reviews, 2009. 38(5): p. 1450-1459.
9. Li, L., et al., High gas storage capacities and stepwise adsorption in a UiO type metal–organic framework incorporating Lewis basic bipyridyl sites. Chemical Communications, 2014. 50(18): p. 2304-2307.
10. Cacho-Bailo, F., et al., High selectivity ZIF-93 hollow fiber membranes for gas separation. Chemical Communications, 2015. 51(56): p. 11283-11285.
11. Paseta, L., et al., Accelerating the controlled synthesis of metal-organic frameworks by a microfluidic approach: a nanoliter continuous reactor. ACS Appl Mater Interfaces, 2013. 5(19): p. 9405-10.
12. Bassous, E., H. Taub, and L. Kuhn, Ink jet printing nozzle arrays etched in silicon. Applied Physics Letters, 1977. 31(2): p. 135-137.
13. Terry, S.C., J.H. Jerman, and J.B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE transactions on electron devices, 1979. 26(12): p. 1880-1886.
14. Teh, S.-Y., et al., Droplet microfluidics. Lab on a Chip, 2008. 8(2): p. 198-220.
15. Li, X., D.R. Ballerini, and W. Shen, A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 2012. 6(1): p. 011301.
16. Ding, X., et al., Surface acoustic wave microfluidics. Lab on a Chip, 2013. 13(18): p. 3626-3649.
17. McNeely, M.R., et al. Hydrophobic microfluidics. in Microfluidic Devices and Systems II. 1999. International Society for Optics and Photonics.
18. Figeys, D. and D. Pinto, Lab-on-a-chip: a revolution in biological and medical sciences. 2000, ACS Publications.
19. Demello, A.J., Control and detection of chemical reactions in microfluidic systems. Nature, 2006. 442(7101): p. 394-402.
20. Chan, E.M., A.P. Alivisatos, and R.A. Mathies, High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. Journal of the American Chemical Society, 2005. 127(40): p. 13854-13861.
21. Rowsell, J.L.C. and O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 2004. 73(1-2): p. 3-14.
22. Stock, N. and S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev, 2012. 112(2): p. 933-69.
23. Seth, S.K., Tuning the formation of MOFs by pH influence: X-ray structural variations and Hirshfeld surface analyses of 2-amino-5-nitropyridine with cadmium chloride. CrystEngComm, 2013. 15(9): p. 1772-1781.
24. Rabenau, A., The role of hydrothermal synthesis in preparative chemistry. Angewandte Chemie International Edition in English, 1985. 24(12): p. 1026-1040.
25. Chen, H., et al., Advances in properties and manufacturing of chromium dioxide. IEEE Transactions on Magnetics, 1984. 20(1): p. 24-26.
26. Eddaoudi, M., et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002. 295(5554): p. 469-472.
27. Banerjee, R., et al., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008. 319(5865): p. 939-943.
28. Suslick, K.S., D.A. Hammerton, and R.E. Cline, Sonochemical hot spot. Journal of the American Chemical Society, 1986. 108(18): p. 5641-5642.
29. Son, W.-J., et al., Sonochemical synthesis of MOF-5. Chemical Communications, 2008(47): p. 6336-6338.
30. Ni, Z. and R.I. Masel, Rapid production of metal− organic frameworks via microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2006. 128(38): p. 12394-12395.
31. Di Renzo, F., Zeolites as tailor-made catalysts: control of the crystal size. Catalysis today, 1998. 41(1-3): p. 37-40.
32. Shekhah, O., et al., MOF thin films: existing and future applications. Chemical Society Reviews, 2011. 40(2): p. 1081-1106.
33. Zacher, D., et al., Thin films of metal–organic frameworks. Chemical Society Reviews, 2009. 38(5): p. 1418-1429.
34. Davis, M.E., Z. Chen, and D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer, in Nanoscience and technology: A collection of reviews from nature journals. 2010, World Scientific. p. 239-250.
35. Song, Y., et al., Ratiometric electrochemical glucose biosensor based on GOD/AuNPs/Cu-BTC MOFs/macroporous carbon integrated electrode. Sensors and Actuators B: Chemical, 2018. 257: p. 792-799.
36. Huang, L., et al., Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and mesoporous materials, 2003. 58(2): p. 105-114.
37. Li, X., et al., Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O (1, 3, 5-benzenetribenzoate) 2. Journal of power sources, 2006. 160(1): p. 542-547.
38. Cavka, J.H., et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
39. Morris, W., et al., Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorganic chemistry, 2012. 51(12): p. 6443-6445.
40. Ling, P., J. Lei, and H. Ju, Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch. Biosens Bioelectron, 2015. 71: p. 373-379.
41. Zhang, G.Y., et al., Zirconium-Based Porphyrinic Metal-Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection. Anal Chem, 2016. 88(22): p. 11207-11212.
42. Leng, X., et al., Zirconium-Porphyrin PCN-222: pH-responsive Controlled Anticancer Drug Oridonin. Evidence-Based Complementary and Alternative Medicine, 2018. 2018.
43. Choban, E.R., et al., Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 2004. 128(1): p. 54-60.
44. Sollier, E., et al., Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab on a Chip, 2011. 11(22): p. 3752-3765.
45. Nunes, J.K., et al., Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. J Phys D Appl Phys, 2013. 46(11).
46. Anna, S.L., N. Bontoux, and H.A. Stone, Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 2003. 82(3): p. 364-366.
47. Stone, H.A. and S. Kim, Microfluidics: basic issues, applications, and challenges. AIChE Journal, 2001. 47(6): p. 1250-1254.
48. Cubaud, T. and T.G. Mason, Capillary threads and viscous droplets in square microchannels. Physics of Fluids, 2008. 20(5).
49. Cubaud, T., U. Ulmanella, and C.-M. Ho, Two-phase flow in microchannels with surface modifications. Fluid Dynamics Research, 2006. 38(11): p. 772.
50. Macosko, E.Z., et al., Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 2015. 161(5): p. 1202-1214.
51. Jeon, J., et al., SERS-based droplet microfluidics for high-throughput gradient analysis. Lab on a Chip, 2019. 19(4): p. 674-681.
52. Nightingale, A., et al., A stable droplet reactor for high temperature nanocrystal synthesis. Lab on a Chip, 2011. 11(7): p. 1221-1227.
53. Faustini, M., et al., Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets. Journal of the American Chemical Society, 2013. 135(39): p. 14619-14626.
54. Assarsson, P. and F. Eirich, Properties of amides in aqueous solution. I. Viscosity and density changes of amide-water systems. An analysis of volume deficiencies of mixtures based on molecular size differences (mixing of hard spheres). The Journal of Physical Chemistry, 1968. 72(8): p. 2710-2719.