簡易檢索 / 詳目顯示

研究生: 黃俊儒
Huang, Jun-Ru
論文名稱: 白蛋白結合肽融合去整合蛋白的表現及其特性探討
Expression and Characterization of Albumin-Binding Peptide-Disintegrin Fusion Protein
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 151
中文關鍵詞: 整合蛋白去整合蛋白白蛋白結合肽人類血清白蛋白
外文關鍵詞: Integrin, Disintegrin, Albumin-binding peptide, Human serum albumin (HSA)
相關次數: 點閱:110下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在藥物代謝動力學上,在體內代謝半衰期較短的蛋白藥物可以藉由生物技術融合蛋白的方式與血漿中的蛋白進行結合,以增加代謝的半衰期。人類血清白蛋白 (HSA) 是一個本身就存在於人體中很好的載體,其在血液中的半衰期高達19天,先前的研究也顯示HSA相較於其他血漿中蛋白具有其特別的優勢是一個很好的藥物載體,可以改善小分子蛋白藥物的半衰期。馬來蝮蛇去整合蛋白(Rhodostomin;簡稱Rho)是一個由68個胺基酸所組成的去整合蛋白,並含有六對雙硫鍵。從先前的研究中發現Rho的突變株ARLDDL是特別針對整合蛋白αVβ3具有專一性抑制能力,其IC50值為51.9 nM;然而先前實驗室也成功地將ARLDDL之N端融合了HSA,並且利用P. pastoris表現系統表現,也發現此融合蛋白是針對整合蛋白αVβ3具有專一性抑制能力,同時半衰期也增加了六倍;然而HSA融合蛋白在室溫下三個月後容易被降解,因此為了增加半衰期以及ARLDDL的穩定性,因此我設計了十個可以結合人類血清白蛋白的結合肽(HSABP),再以三種不同的橋接區域 (linker spacers) 將之以基因重組的方式融合到ARLDDL上。我成功地將這些融合蛋白以P. pastoris表現系統表現這些蛋白,但是其表現量卻低於1 mg/L,在調整優化過後的蛋白產量增加了5至10倍左右。至今,有八個HSABP-ARLDDL融合蛋白進行大量表現並且純化之。從NMR實驗分析的結果顯示,HSABP1-ARLDDL以及HSABP8-ARLDDL融合蛋白之ARLDDL功能區結構有正常摺疊。由非平衡式小區域膠體管柱層析結果得知HSABP1-ARLDDL與HSA的解離平衡常數KD值為397 μM;更進一步由表面電漿共振 (SPR) 實驗的結果顯示其KD值為563 nM。細胞黏著實驗也說明HSABP1-ARLDDL及HSABP8-ARLDDL融合蛋白對於整合蛋白αVβ3也有很好的抑制能力,IC50 分別為28.33 nM及41.21 nM。由這些結果表示HSABPn-ARLDDL融合重組蛋白不但可以與HSA進行結合,而且還保有其ARLDDL區域的3D結構及抑制整合蛋白αVβ3的功能,且橋接區域的大小似乎不影響融合蛋白的功能。這份研究結果也表示HSA結合肽融合去整合蛋白可以將高潛力小蛋白治療藥物結合到HSA,暗示著可能有延長藥物在體內半衰期的可能性。

    Plasma protein binding can be an effective means of improving the pharmacokinetic properties of short-lived protein therapeutics. Human serum albumin (HSA) is an endogenous molecule transporter with a half-life of 19 days, and previous studies have indicated that HSA has unique advantages over other plasma proteins as a drug carrier for improving the half-life of small protein drug. Rhodostomin (Rho) is a disintegrin that contain 68 amino acid including six disulfide bonds. Our study shows that Rho mutant ARLDDL is an integrin αVβ3-specific disintegrin with an IC50 value of 51.9 nM. We have successfully expressed HSA-ARLDDL in P. pastoris and found that it retains its activity with a 6-fold increase in half-life; however, HSA was easily degraded at room temperature after three months. To improve the half-life and increase the stability of ARLDDL, I designed ten albumin-binding peptides (HSABP) and used three different linker spacers to fuse them with ARLDDL. They were successfully expressed in P. pastoris; however, their expression levels were less than 1 mg/L. The yield after optimization of their protein production was about 10-fold increase. To date, eight HSABP-ARLDDL fusion protein variants were produced and purified. NMR analysis showed that HSABP1-ARLDDL and HSABP8-ARLDDL fusion protein variants exhibited the correct fold. Nonequilibrium small-zone gel-filtration analysis showed that HSABP1-ARLDDL can bind to HSA with a KD value of 397 μM. Surface plasmon resonance (SPR) showed that the binding of HSABP1-ARLDDL to HSA was determined to have a KD value of 563 nM. Cell adhesion analysis showed that HSABP1-ARLDDL and HSABP8-ARLDDL inhibited integrin αVβ3 with the IC50 values of 28.33 and 41.21 nM. In conclusion, these results suggest that HSABPn-ARLDDL retains its function and 3D structure and can bind to HSA, and the sizes of linker were not affecting their functions. This study demonstrated that HSA-binding peptide-fused proteins designed by this study are potential long-half-life drug candidates.

    中文摘要 i 英文摘要 (Abstract) ii 誌謝 iii 目錄 v 表目錄 viii 圖目錄 ix 附錄目錄 xi 縮寫檢索表 xii 儀器 xiii 第1章 緒論 1 1.1 背景資料 1 1.1.1 整合蛋白 (Integrin) 之介紹 2 1.1.2 蛇毒蛋白及去整合蛋白 (disintegrin) 之介紹 5 1.1.3 馬來蝮蛇去整合蛋白及其突變株蛋白 (mutant) 之介紹 7 1.1.4 融合重組蛋白 (recombinant fusion proteins) 之介紹及其應用 8 1.1.5 人類血清白蛋白 (HSA) 之介紹 10 1.2 核磁共振光譜 (NMR) 在蛋白質結構上的應用介紹 11 1.3 蛋白質結合能力測定技術原理介紹 13 1.3.1 非平衡式小區域膠體管柱層析法 (Nonequilibrium small-zone gel-filtration) 14 1.3.2 表面電漿共振 (SPR) 原理及其在生醫領域上之應用簡介 15 1.3.3 恆溫滴定量熱 (ITC) 法 17 1.3.4 三種結合能力測定技術之比較 18 1.4 研究動機與目標 19 第2章 材料與方法 21 2.1 白蛋白結合肽融合去整合蛋白 (albumin-binding peptide-disintegrin fusion proteins) 之製備 21 2.1.1 實驗菌株和質體 22 2.1.2 培養基配方與培養條件 22 2.1.2.1 E. coli 培養基配方 22 2.1.2.2 Pichia 培養基配方 23 2.1.3 重組基因之構築 27 2.1.4 重組蛋白之表現與純化及優化表現方法 32 2.1.5 SDS-PAGE 分析 36 2.1.5.1 醣化蛋白染色 40 2.1.6 重組蛋白之質譜鑑定 41 2.2 NMR 樣品製備與光譜測定 42 2.2.1 NMR 樣品製備 42 2.2.2 NMR 圖譜的測定 42 2.3 蛋白質結合能力 (binding affinity) 之測定 43 2.3.1 非平衡式小區域膠體管柱層析法 (Nonequilibrium small-zone gel-filtration) 43 2.3.2 表面電漿共振 (SPR) 法 46 2.3.3 恆溫滴定量熱 (ITC) 法 50 2.4 整合蛋白抑制實驗 51 2.4.1 細胞株及培養方法 51 2.4.2 Rho與白蛋白結合肽融合去整合蛋白抑制細胞黏著之研究 53 第3章 結果 56 3.1 Rho、突變株重組蛋白ARLDDL與融合蛋白 HSABPn-ARLDDL之製備與鑑定 56 3.2 蛋白質產率優化 57 3.3 HSA結合區域二級結構預測結果 59 3.4 ARLDDL突變株重組蛋白與HSABPn-ARLDDL在NMR實驗之結果 59 3.5 HSA與HSABPn-ARLDDL之結合能力實驗結果 61 3.5.1 膠體管柱層析法實驗結果 61 3.5.2 表面電漿共振 (SPR) 法實驗結果 63 3.5.2.1 晶片固化條件的測試與固化HSA結果 63 3.5.2.2 蛋白質結合能力分析實驗結果 63 3.5.3 恆溫滴定量熱 (ITC) 法實驗結果 64 3.6 HSABPn-ARLDDL融合重組蛋白抑制細胞黏著的結果 64 第4章 討論 66 4.1 蛋白表現與條件的影響及其他改善表現量的方法討論 66 4.2 白蛋白結合肽區域與去整合蛋白突變株區域的結構探討 67 4.3 HSA與HSABPn-ARLDDL結合能力之探討 68 4.4 HSABPn-ARLDDL融合重組蛋白對於抑制細胞黏著之探討 70 4.5 HSABPn-ARLDDL融合重組蛋白橋接區域對功能上的影響 71 第5章 結論 72 參考文獻 74 表 84 圖 93 附錄 137 附錄 1 15N同位素標定之ARLDDL突變株蛋白製備 137 1.1 材料與方法 137 附錄 2 附錄圖表 138 自述 151

    Ashkenazi, A., and S.M. Chamow. 1997. Immunoadhesins as research tools and therapeutic agents. Current opinion in immunology. 9:195-200.
    Auzzas, L., F. Zanardi, L. Battistini, P. Burreddu, P. Carta, G. Rassu, C. Curti, and G. Casiraghi. 2010. Targeting alphavbeta3 integrin: design and applications of mono- and multifunctional RGD-based peptides and semipeptides. Current medicinal chemistry. 17:1255-1299.
    Avraamides, C.J., B. Garmy-Susini, and J.A. Varner. 2008. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 8:604-617.
    Barczyk, M., S. Carracedo, and D. Gullberg. 2010. Integrins. Cell and tissue research. 339:269-280.
    Bessette, P.H., J.J. Rice, and P.S. Daugherty. 2004. Rapid isolation of high-affinity protein binding peptides using bacterial display. Protein engineering, design & selection : PEDS. 17:731-739.
    Biacore. 2003. Biacore® Sensor Surface Handbook.
    Blobel, C.P., and J.M. White. 1992. Structure, function and evolutionary relationship of proteins containing a disintegrin domain. Curr Opin Cell Biol. 4:760-765.
    Bokel, C., and N.H. Brown. 2002. Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Developmental cell. 3:311-321.
    Boze, H., L. Celine, C. Patrick, R. Fabien, V. Christine, C. Yves, and M. Guy. 2001. High-level secretory production of recombinant porcine follicle-stimulating hormone by Pichia pastoris. Process Biochem. 36:907-913.
    Calvete, J.J., P. Juarez, and L. Sanz. 2007. Snake venomics. Strategy and applications. J Mass Spectrom. 42:1405-1414.
    Calvete, J.J., C. Marcinkiewicz, D. Monleon, V. Esteve, B. Celda, P. Juarez, and L. Sanz. 2005. Snake venom disintegrins: evolution of structure and function. Toxicon : official journal of the International Society on Toxinology. 45:1063-1074.
    Calvete, J.J., M.P. Moreno-Murciano, R.D. Theakston, D.G. Kisiel, and C. Marcinkiewicz. 2003. Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. The Biochemical journal. 372:725-734.
    Carter, D.C., X.M. He, S.H. Munson, P.D. Twigg, K.M. Gernert, M.B. Broom, and T.Y. Miller. 1989. Three-dimensional structure of human serum albumin. Science. 244:1195-1198.
    Carter, D.C., and J.X. Ho. 1994. Structure of serum albumin. Advances in protein chemistry. 45:153-203.
    Chang, H.H., S.T. Hu, T.F. Huang, S.H. Chen, Y.H. Lee, and S.J. Lo. 1993. Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochemical and biophysical research communications. 190:242-249.
    Chang, H.H., W.J. Tsai, and S.J. Lo. 1997. Glutathione S-transferase-rhodostomin fusion protein inhibits platelet aggregation and induces platelet shape change. Toxicon : official journal of the International Society on Toxinology. 35:195-204.
    Chapman, A.P. 2002. PEGylated antibodies and antibody fragments for improved therapy: a review. Advanced drug delivery reviews. 54:531-545.
    Choy, E.H., B. Hazleman, M. Smith, K. Moss, L. Lisi, D.G. Scott, J. Patel, M. Sopwith, and D.A. Isenberg. 2002. Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomized, dose-escalating trial. Rheumatology (Oxford). 41:1133-1137.
    Chuang, V.T., U. Kragh-Hansen, and M. Otagiri. 2002. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharmaceutical research. 19:569-577.
    Clark, R., K. Olson, G. Fuh, M. Marian, D. Mortensen, G. Teshima, S. Chang, H. Chu, V. Mukku, E. Canova-Davis, T. Somers, M. Cronin, M. Winkler, and J.A. Wells. 1996. Long-acting growth hormones produced by conjugation with polyethylene glycol. J Biol Chem. 271:21969-21977.
    Dennis, M.S., M. Zhang, Y.G. Meng, M. Kadkhodayan, D. Kirchhofer, D. Combs, and L.A. Damico. 2002. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem. 277:35035-35043.
    Desgrosellier, J.S., L.A. Barnes, D.J. Shields, M. Huang, S.K. Lau, N. Prevost, D. Tarin, S.J. Shattil, and D.A. Cheresh. 2009. An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med. 15:1163-1169.
    Fox, J.W., and S.M. Serrano. 2005. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon : official journal of the International Society on Toxinology. 45:969-985.
    Freire, E. 2004. Isothermal titration calorimetry: controlling binding forces in lead optimization. Drug Discovery Today: Technologies. 1:295-299.
    Frey, B.L., C.E. Jordan, S. Kornguth, and R.M. Corn. 1995. Control of the Specific Adsorption of Proteins onto Cold Surfaces with Poly(L-Lysine) Monolayers. Anal Chem. 67:4452-4457.
    Gegner, J.A., and F.W. Dahlquist. 1991. Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. Proc Natl Acad Sci U S A. 88:750-754.
    Gomes, P., E. Giralt, and D. Andreu. 2000. Direct single-step surface plasmon resonance analysis of interactions between small peptides and immobilized monoclonal antibodies. Journal of immunological methods. 235:101-111.
    Guo, R.T., L.J. Chou, Y.C. Chen, C.Y. Chen, K. Pari, C.J. Jen, S.J. Lo, S.L. Huang, C.Y. Lee, T.W. Chang, and W.J. Chaung. 2001. Expression in Pichia pastoris and characterization by circular dichroism and NMR of rhodostomin. Proteins. 43:499-508.
    Haimovich, J., D. Czerwinski, C.P. Wong, and R. Levy. 1998. Determination of anti-idiotype antibodies by surface plasmon resonance. Journal of immunological methods. 214:113-119.
    Holdgate, G.A., and W.H. Ward. 2005. Measurements of binding thermodynamics in drug discovery. Drug Discov Today. 10:1543-1550.
    Holmes, W.J., R.A. Darby, M.D. Wilks, R. Smith, and R.M. Bill. 2009. Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime. Microbial cell factories. 8:35.
    Huang, T.F., Y.J. Wu, and C. Ouyang. 1987. Characterization of a potent platelet aggregation inhibitor from Agkistrodon rhodostoma snake venom. Biochimica et biophysica acta. 925:248-257.
    Huang, T.F., C.H. Yeh, and W.B. Wu. 2001. Viper venom components affecting angiogenesis. Haemostasis. 31:192-206.
    Humphries, M.J. 2001. Cell-substrate adhesion assays. Current protocols in cell biology / editorial board, Juan S. Bonifacino ... [et al.]. Chapter 9:Unit 9 1.
    Hynes, R.O. 2002. Integrins: bidirectional, allosteric signaling machines. Cell. 110:673-687.
    Hynes, R.O. 2004. The emergence of integrins: a personal and historical perspective. Matrix biology : journal of the International Society for Matrix Biology. 23:333-340.
    Invitrogen. 2010. EasySelect™ Pichia Expression Kit: For Expression of Recombinant Proteins Using pPICZ and pPICZα in Pichia pastoris. Invitrogen User Manual.
    Ishima, R., and D.A. Torchia. 2000. Protein dynamics from NMR. Nat Struct Biol. 7:740-743.
    Jackson, K. 2007. The evolution of venom-conducting fangs: insights from developmental biology. Toxicon : official journal of the International Society on Toxinology. 49:975-981.
    Johnsson, B., S. Lofas, and G. Lindquist. 1991. Immobilization of Proteins to a Carboxymethyldextran-Modified Gold Surface for Biospecific Interaction Analysis in Surface-Plasmon Resonance Sensors. Analytical biochemistry. 198:268-277.
    Jonsson, U., L. Fagerstam, S. Lofas, E. Stenberg, R. Karlsson, A. Frostell, F. Markey, and F. Schindler. 1993. Introducing a biosensor based technology for real-time biospecific interaction analysis. Annales de biologie clinique. 51:19-26.
    Juarez, P., I. Comas, F. Gonzalez-Candelas, and J.J. Calvete. 2008. Evolution of snake venom disintegrins by positive Darwinian selection. Molecular biology and evolution. 25:2391-2407.
    Katsamba, P.S., I. Navratilova, M. Calderon-Cacia, L. Fan, K. Thornton, M. Zhu, T.V. Bos, C. Forte, D. Friend, I. Laird-Offringa, G. Tavares, J. Whatley, E. Shi, A. Widom, K.C. Lindquist, S. Klakamp, A. Drake, D. Bohmann, M. Roell, L. Rose, J. Dorocke, B. Roth, B. Luginbuhl, and D.G. Myszka. 2006. Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users. Analytical biochemistry. 352:208-221.
    Kay, L.E. 1998. Protein dynamics from NMR. Nat Struct Biol. 5:513-517.
    Keyt, B.A., N.F. Paoni, C.J. Refino, L. Berleau, H. Nguyen, A. Chow, J. Lai, L. Pena, C. Pater, J. Ogez, and et al. 1994. A faster-acting and more potent form of tissue plasminogen activator. Proc Natl Acad Sci U S A. 91:3670-3674.
    Kochva, E. 1987. The origin of snakes and evolution of the venom apparatus. Toxicon : official journal of the International Society on Toxinology. 25:65-106.
    Kratz, F. 2008. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of controlled release : official journal of the Controlled Release Society. 132:171-183.
    Lee, J.O., L.A. Bankston, M.A. Arnaout, and R.C. Liddington. 1995. Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure. 3:1333-1340.
    Lee, L.S., C. Conover, C. Shi, M. Whitlow, and D. Filpula. 1999. Prolonged circulating lives of single-chain Fv proteins conjugated with polyethylene glycol: a comparison of conjugation chemistries and compounds. Bioconjugate chemistry. 10:973-981.
    Li, H., Y. Ma, Y. Chen, Y. Sang, T. Zhou, M. Qiu, X. Huang, C. Zhou, and Z. Su. 2010. A protease-based strategy for the controlled release of therapeutic peptides. Angew Chem Int Ed Engl. 49:4930-4933.
    Linman, M.J., A. Abbas, and Q. Cheng. 2010. Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. The Analyst. 135:2759-2767.
    Lofas, S., and B. Johnsson. 1990. A Novel Hydrogel Matrix on Gold Surfaces in Surface-Plasmon Resonance Sensors for Fast and Efficient Covalent Immobilization of Ligands. J Chem Soc Chem Comm:1526-1528.
    Lu, X., D. Lu, M.F. Scully, and V.V. Kakkar. 2005. Snake venom metalloproteinase containing a disintegrin-like domain, its structure-activity relationships at interacting with integrins. Current medicinal chemistry. Cardiovascular and hematological agents. 3:249-260.
    Luo, B.H., C.V. Carman, and T.A. Springer. 2007. Structural basis of integrin regulation and signaling. Annual review of immunology. 25:619-647.
    Mainardes, R.M., and L.P. Silva. 2004. Drug delivery systems: past, present, and future. Current drug targets. 5:449-455.
    Markland, F.S. 1998. Snake venoms and the hemostatic system. Toxicon : official journal of the International Society on Toxinology. 36:1749-1800.
    Mayer, C.L., W.K. Snyder, M.A. Swietlicka, A.D. Vanschoiack, C.R. Austin, and B.J. McFarland. 2009. Size-exclusion chromatography can identify faster-associating protein complexes and evaluate design strategies. BMC research notes. 2:135.
    McLane, M.A., C. Marcinkiewicz, S. Vijay-Kumar, I. Wierzbicka-Patynowski, and S. Niewiarowski. 1998. Viper venom disintegrins and related molecules. Proc Soc Exp Biol Med. 219:109-119.
    McLane, M.A., E.E. Sanchez, A. Wong, C. Paquette-Straub, and J.C. Perez. 2004. Disintegrins. Current drug targets. Cardiovascular & haematological disorders. 4:327-355.
    Mittermaier, A., and L.E. Kay. 2006. Review - New tools provide new insights in NMR studies of protein dynamics. Science. 312:224-228.
    Navratilova, I., J. Sodroski, and D.G. Myszka. 2005. Solubilization, stabilization, and purification of chemokine receptors using biosensor technology. Analytical biochemistry. 339:271-281.
    Nguyen, A., A.E. Reyes, 2nd, M. Zhang, P. McDonald, W.L. Wong, L.A. Damico, and M.S. Dennis. 2006. The pharmacokinetics of an albumin-binding Fab (AB.Fab) can be modulated as a function of affinity for albumin. Protein engineering, design & selection : PEDS. 19:291-297.
    Niewiarowski, S., M.A. McLane, M. Kloczewiak, and G.J. Stewart. 1994. Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Seminars in hematology. 31:289-300.
    Osborn, B.L., H.S. Olsen, B. Nardelli, J.H. Murray, J.X. Zhou, A. Garcia, G. Moody, L.S. Zaritskaya, and C. Sung. 2002. Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther. 303:540-548.
    Paolillo, M., M.A. Russo, M. Serra, L. Colombo, and S. Schinelli. 2009. Small molecule integrin antagonists in cancer therapy. Mini reviews in medicinal chemistry. 9:1439-1446.
    Peters, T., Jr. 1985. Serum albumin. Advances in protein chemistry. 37:161-245.
    Phizicky, E.M., and S. Fields. 1995. Protein-protein interactions: methods for detection and analysis. Microbiological reviews. 59:94-123.
    Piliarik, M., H. Vaisocherova, and J. Homola. 2009. Surface plasmon resonance biosensing. Methods Mol Biol. 503:65-88.
    Plant, A.L., M. Brigham-Burke, E.C. Petrella, and D.J. O'Shannessy. 1995. Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Analytical biochemistry. 226:342-348.
    Plow, E.F., T.A. Haas, L. Zhang, J. Loftus, and J.W. Smith. 2000. Ligand binding to integrins. J Biol Chem. 275:21785-21788.
    Pockros, P.J., R. Carithers, P. Desmond, D. Dhumeaux, M.W. Fried, P. Marcellin, M.L. Shiffman, G. Minuk, K.R. Reddy, R.W. Reindollar, A. Lin, and M.J. Brunda. 2004. Efficacy and safety of two-dose regimens of peginterferon alpha-2a compared with interferon alpha-2a in chronic hepatitis C: a multicenter, randomized controlled trial. The American journal of gastroenterology. 99:1298-1305.
    Quinn, J.G., R. O'Kennedy, M. Smyth, J. Moulds, and T. Frame. 1997. Detection of blood group antigens utilising immobilised antibodies and surface plasmon resonance. Journal of immunological methods. 206:87-96.
    Raether, H. 1988. Surface-Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tr Mod Phys. 111:1-133.
    Ramjaun, A.R., and K. Hodivala-Dilke. 2009. The role of cell adhesion pathways in angiogenesis. Int J Biochem Cell B. 41:521-530.
    Rich, R.L., and D.G. Myszka. 2008. Survey of the year 2007 commercial optical biosensor literature. Journal of molecular recognition : JMR. 21:355-400.
    Sarkar, C.A., K. Lowenhaupt, T. Horan, T.C. Boone, B. Tidor, and D.A. Lauffenburger. 2002. Rational cytokine design for increased lifetime and enhanced potency using pH-activated "histidine switching". Nature biotechnology. 20:908-913.
    Schagger, H. 2006. Tricine-SDS-PAGE. Nat Protoc. 1:16-22.
    Shimaoka, M., and T.A. Springer. 2003. Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov. 2:703-716.
    Shimaoka, M., J. Takagi, and T.A. Springer. 2002. Conformational regulation of integrin structure and function. Annual review of biophysics and biomolecular structure. 31:485-516.
    Springer, T.A., and J.H. Wang. 2004. The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Advances in protein chemistry. 68:29-63.
    Syed, S., P.D. Schuyler, M. Kulczycky, and W.P. Sheffield. 1997. Potent antithrombin activity and delayed clearance from the circulation characterize recombinant hirudin genetically fused to albumin. Blood. 89:3243-3252.
    Takada, Y., X. Ye, and S. Simon. 2007. The integrins. Genome biology. 8:215.
    Tamkun, J.W., D.W. DeSimone, D. Fonda, R.S. Patel, C. Buck, A.F. Horwitz, and R.O. Hynes. 1986. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 46:271-282.
    Tanaka, H., R. Satake-Ishikawa, M. Ishikawa, S. Matsuki, and K. Asano. 1991. Pharmacokinetics of recombinant human granulocyte colony-stimulating factor conjugated to polyethylene glycol in rats. Cancer Res. 51:3710-3714.
    Thillaivinayagalingam, P., J. Gommeaux, M. McLoughlin, D. Collins, and A.R. Newcombe. 2010. Biopharmaceutical production: Applications of surface plasmon resonance biosensors. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 878:149-153.
    Tung, J.S., J. Gimenez, C.T. Przysiecki, and G. Mark. 1998. Characterization of recombinant hepatitis B surface antigen using surface plasmon resonance. Journal of pharmaceutical sciences. 87:76-80.
    Veronese, F.M., and G. Pasut. 2005. PEGylation, successful approach to drug delivery. Drug Discov Today. 10:1451-1458.
    Visser, N.F., and A.J. Heck. 2008. Surface plasmon resonance mass spectrometry in proteomics. Expert review of proteomics. 5:425-433.
    Werle, M., and A. Bernkop-Schnurch. 2006. Strategies to improve plasma half life time of peptide and protein drugs. Amino acids. 30:351-367.
    Wuthrich, K. 1990. Protein structure determination in solution by NMR spectroscopy. J Biol Chem. 265:22059-22062.
    Xiao, T., J. Takagi, B.S. Coller, J.H. Wang, and T.A. Springer. 2004. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature. 432:59-67.
    Xiong, J.P., T. Stehle, B. Diefenbach, R. Zhang, R. Dunker, D.L. Scott, A. Joachimiak, S.L. Goodman, and M.A. Arnaout. 2001. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science. 294:339-345.
    Xiong, J.P., T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S.L. Goodman, and M.A. Arnaout. 2002. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science. 296:151-155.
    Yeh, C.H., H.C. Peng, R.S. Yang, and T.F. Huang. 2001. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol Pharmacol. 59:1333-1342.
    Yeh, P., D. Landais, M. Lemaitre, I. Maury, J.Y. Crenne, J. Becquart, A. Murry-Brelier, F. Boucher, G. Montay, R. Fleer, and et al. 1992. Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Natl Acad Sci U S A. 89:1904-1908.
    Zimmerman, J.K., and G.K. Ackers. 1971. Molecular sieve studies of interacting protein systems. X. Behavior of small zone profiles for reversibly self-associating solutes. J Biol Chem. 246:7289-7292.
    陳彥青. 2001. 馬來蝮蛇蛇毒蛋白及其突變株的結構與動力學之研究. 國立成功大學生物化學研究所碩士論文.
    陳秋月. 2005. 利用馬來蝮蛇去整合蛋白以研究整合蛋白們所辨識的序列和製備胺基酸選擇性同位素標示的蛋白. 國立成功大學基礎醫學研究所博士論文.

    下載圖示 校內:2022-12-31公開
    校外:2022-12-31公開
    QR CODE