簡易檢索 / 詳目顯示

研究生: 王聖禾
Wang, Sheng-He
論文名稱: 非接觸式超音波聲浮夾持系統之設計與分析
Design and Analysis of Non-contact Gripping Systems Using Ultrasonic Levitation
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 116
中文關鍵詞: 非接觸式夾持聲音懸浮技術壓電振動子近場聲波非接觸式聲音量測
外文關鍵詞: Non-contact gripping system, Non-contact levitation technology, Non-contact acoustic measurement, Acoustic levitation, Linear feedback block diagram, Near-field acoustic analysis
相關次數: 點閱:90下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著多功能且輕薄的電子產品發展,使得零件漸漸朝向微小化,提升產品組裝的困難度,因此需發展微組裝技術。其中,微小物件之夾持是微組裝中最重要的一環,然而微小物件易因表面張力作用,使得在取放過程中附著於夾持具上,造成夾持位置的偏移,甚至因夾持力的不易控制,使夾持物件的表面產生磨損與髒污,這些問題將使產品的良率下降。有鑑於此,有人利用非接觸懸浮技術來實現非接觸式夾持系統,由於夾持具並不與物件實際接觸,克服在夾取過程中所產生的問題。其中,聲音懸浮技術具有不受漂浮物材質與形狀限制的特性,近年被廣泛地應用在光電、半導體、微機電製程、複合材料、與生物醫學等領域,由這些應用領域亦可知其發展性。
    本研究係利用壓電致動器產生超音聲波,以實現非接觸式超音波夾持系統,提升傳統聲浮技術的懸浮力量及夾持穩定性,將可應用於開放空間之夾持。由於聲浮夾持系統包含超音波聲源與聲波之間的耦合,其理論分析較為複雜。因此本論文將建立壓電致動器的數學模型,描述其機電耦合的關係,並轉化成系統方塊圖,分析在高頻操作時的共振行及其特性響應。並且類比於一般的機電馬達系統方塊圖,提出系統參數鑑別之實驗架構,建立出壓電致動器的動態模型。
    為了實現超音波聲浮夾持系統,本研究提出一套完整的設計流程,包含超音波聲源的設計,並由平面聲波原理求得達到共振聲場的操作條件,以達到足夠的懸浮力,之後根據近場的聲壓理論,計算出聲浮夾持系統內聲壓的分佈,藉此獲得懸浮位置與懸浮物密度等特性分析。而在之前的文獻中,由於在超音波量測上的一些限制,造成無法驗證理論分析的正確性,侷限非接觸夾持應用的發展。因此本論文也提出非接觸式量測的理論,不僅可量測出所設計的夾持系統之懸浮特性,並由實驗結果顯示,本論文所提出之設計流程與理論模型,具可行性與實用性。因此根據所提出的設計流程,實現一套傾斜式聲浮夾持系統,藉由調整壓電致動器的擺設角度與距離,可控制懸浮物的位置,達到平面的運動,並且藉由傾斜擺置的設計,可抵抗外界環境的干擾,擴展聲音懸浮技術的應用領域。

    Recently, miniature customer electronic products with multi-functional features require the continuous reduction in the average size of the micro-components, which makes assembly become a difficult task in the micro-manipulation process. Standing-wave acoustic levitation technology, which is advantageous for levitating various shapes and materials of micro- components, has been developed to avoid damage or contamination in the pick-up and release procedure, and has been widely used in industrial applications such as optoelectronics, semiconductors, composite materials, and biomedical for its flexibility.
    This paper aims to provide an alternative method to determine the characteristics of a piezoelectric transducer, which is employed to generate the high intensity acoustic wave for increasing the performance of the acoustic levitation structure. A block diagram approach is proposed to analyze the dynamic characteristics of a thickness-mode piezoelectric transducer at its resonance frequency. Based on the feedback loop framework, the input-output relations of the electromechanical interaction of the transducer are described in terms of linear block diagram models. Combined with the near-field acoustic equation, a theoretical model of the acoustic tweezers is derived such that the pressure distribution of the tweezers can be calculated to determine the trapped position.
    In addition, a design procedure is proposed to determine the operation conditions for the resonance acoustic field by acoustic plane-wave analysis, and then a non-contact acoustic tweezers is implemented for suspending small objects of millimeter dimension and low density in the open-space environment without direct mechanical contact, such as a PVC tube, small metal pieces, and mosquitoes. To monitor the levitating behaviors of the proposed acoustic tweezers, non-contact measurement principles are proposed such that a parallel light with a CCD camera is adopted to measure the levitating position without the scattering problem, and a laser interferometer is employed to non-contact measure the acoustic pressure without acoustic interference. Based on these behavior measurements, a significant theoretical-measurement agreement to implement the acoustic tweezers by the proposed model and design procedure is demonstrated.
    Hence, a quasi-standing wave field by crossing two ultrasonic waves with an inclined angle can be designed to develop a novel acoustic tweezers without the need for a reflector instrument. The proposed acoustic tweezers demonstrates the capability of 2-D manipulation by adjusting the inclined angle and the relative distance of the two transducers, respectively. In addition, due to the horizontal arrangement of the two transducers with an inclined angle, the resistance ability from the external environment disturbances can be improved to extend the acoustic levitation applications.

    摘要 I Abstract III 致謝 V Contents VI List of Tables IX List of Figures X 1. Introduction 01 1.1 Motivation 01 1.2 Background 04 1.2.1 Non-Contact Tweezers Technology 04 1.2.2 Comparison 10 1.2.3 Application of Acoustic Tweezers 11 1.3 Concept of Non-Contact Gripping System 15 1.4 Contribution and Scope of this Dissertation 17 2. Design and Modeling of Ultrasonic Transducer 20 2.1 Introduction of the Langevin Transducer 21 2.2 Amplified Horn Design 24 2.3 Modeling of Piezoelectric Transducer 32 2.3.1 Introduction 32 2.3.2 Input-output Relation of the Piezoelectric Material 33 2.3.3 Theoretical Model of the Piezoelectric Transducer 36 3. Theoretical Analysis of Single-Axis Acoustic Levitation 41 3.1 Single-Axis Acoustic Levitating Structure 41 3.2 Plane Wave Analysis 42 3.3 Pressure Distribution Calculation 47 3.3.1 Integral Formula 47 3.3.2 Discrete Formula 51 3.4 Theoretical Analysis of Acoustic Levitation 54 3.5 Simulation of the Acoustic Levitation 57 3.6 Theoretical Model of the Single-Axis Acoustic Levitation 59 4. Characteristic Measurement of Single-Axis Acoustic Levitation 61 4.1 Parameter Identification of Piezoelectric transducer 61 4.1.1 Measurement setup 62 4.1.2 Parameters Identification Procedure 63 4.1.3 Model Verification and the Characteristic Measurement 69 4.2 Construction of Single-Axis Acoustic Levitation 72 4.3 Levitation Position Measurement 76 4.4 Acoustic Pressure Measurement 80 4.4.1 Distribution along the Edge 80 4.4.2 Distribution along the Center 83 5. Noncontact Acoustic Tweezers Using Quasi-Standing Waves 88 5.1 Principle of Designed Acoustic Tweezers 88 5.2 Theoretical Analysis of the Proposed Tweezers 91 5.2.1 Plane-wave analysis 91 5.2.2 Near-field Analysis 93 5.2.3 Theoretical Model of Inclined Acoustic Tweezers 95 5.3 Design of the non-contact acoustic tweezers 96 5.3.1 Design Procedure 96 5.3.2 Operation Condition Determination 97 5.3.3 Acoustic Pressure Analysis 101 5.4 Implementation of the Proposed Acoustic Tweezers 102 5.4.1 Experimental Setup 102 5.4.2 Levitating position Measurement 103 5.4.3 Measurement of Levitating Behavior 105 6. Conclusions 108 6.1 Summary 108 6.2 Recommendations for Further Research 110 References 112

    [1] M. Onori, Minutes of the EUPASS and road map workshop, Technical report, Assembly Net, Aachen, November 2002.
    [2] 光阴的故事 回顾手机外观发展, http://www.tompda.com/c/article/14805-7/.

    [3] M. Tichem, D. Lang and B. Karpuschewski, “A Classification Scheme for Quantitative Analysis of Micro-grip Principles,” Assembly Automation, Vol. 24, pp. 88-93, 2004.
    [4] F. Arai, D. Andou, Y. Nonoda, T. Fukuda, H. Iwata, and K. Itoigawa, “Integrated Microendeffector for Micromanipulation,” IEEE/ASME Transactions on Mechatronics, Vol. 3, pp. 17-23, 1998.
    [5] R. S. Fearing, “Survey of Sticking Effects for Micro Parts Handling,” International Conference on Intelligent Robots and Systems, Pennsylvania, USA, 1995.
    [6] F. Arai, D. Ando, T. Fukuda, Y. Nonoda, and T. Oota, “Micro Manipulation Based on Micro Physics-strategy Based on Attractive Force Reduction and Stress Measurement,” International Conference on Intelligent Robots and Systems , Pennsylvania, USA, 1995.
    [7] F. Arai and T. Fukuda, “Adhesion-type Micro Endeffector for Micro Manipulation,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, New Mexico, 1997.
    [8] V. Vandaele, P. Lambert, and A. Delchambre, “Non-contact Handling in Microassembly: Acoustical Levitation,” Precision Engineering, Vol. 29, pp. 491-505, 2005.
    [9] A. J. S. Salmeron, R. L. Tarazon, R. G. Diana, and C. R. Viala, “Recent Development in Micro-handling Systems for Micro-manufacturing,” Journal of Materials Processing Technology, Vol. 167, pp. 499-507, 2005.
    [10] E. West, A. Yamamoto, T. Higuchi, “The Concept of ‘‘Haptic Tweezer’’, A Non- contact Object Handling System Using Levitation Techniques and Haptics,” Mechatronics, Vol. 17, pp. 345-356, 2007.
    [11] T. Ohji, T. Shinkai, K. Amei, M. Sakui, “Application of Lorentz Force to a Magnetic Levitation System for a Non-magnetic Thin Plate,” Journal of Materials Processing Technology, Vol. 181, pp. 40-43, 2007.
    [12] E. V. West, A. Yamamoto, T. Higuchi, “Automatic Object Release in Magnetic and Electrostatic Levitation Systems,” Precision Engineering, Vol. 33, pp. 217-228, 2009.
    [13] J. Jin, T. Higuchi, and M. Kanemoto, “Electrostatic Levitator for Hard Disk Media,” IEEE Transactions on Industrial Electronics, Vol. 42, pp. 467-473, 1995.
    [14] E. J. C. Bos, J. E. Bullema, F. L. M. Delbressine, P. H. J. Schellekens, and A. Dietzel, “A Lightweight Suction Gripper for Micro Assembly,” Precision Engineering, Vol. 32, pp. 100-105, 2008.
    [15] G. J. Laurent, A. Delettre and N. Le, “A New Aerodynamic Traction Principle for Handling Products on an Air Cushion,” IEEE Transactions on Robotics, Vol. 27, pp. 379-384, 2011.
    [16] S. Davis, J. O. Gray, and D. G. Caldwell, “An End Effector Based on The Bernoulli Principle for Handling Sliced Fruit and Vegetables,” Robotics and Computer- Integrated Manufacturing, Vol. 24, pp. 249-257, 2008.
    [17] M. I. Kohira, A. Isomura, N. Magome, S. Mukai, and K. Yoshikawa, “Optical Levitation of a Droplet under a Linear Increase in Gravitational Acceleration,” Chemical Physics Letters, Vol. 414, pp. 389-392, 2005.
    [18] G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Optical Tweezer Micro- manipulation of Wlamentous Fungi,” Fungal Genetics and Biology, Vol. 44, pp. 1-13, 2007.
    [19] L. Y. Pozzo, A. Fontes, A. A. Thomaz, B. S. Santos, P. M. A. Farias, D. C. Ayres, S. Giorgio, and C. L. Cesar, “Studying Taxis in Real Time Using Optical Tweezers: Applications for Leishmania Amazonensis Parasites,” Micron, Vol. 40, pp. 617-620, 2009.
    [20] E. Matsuo, Y. Koike, K. Nakamura, S. Ueha, and Y. Hashimoto, “Holding Characteristics of Planar Objects Suspended by Near-field Acoustic Levitation,” Ultrasonics, Vol. 38, pp. 60-63, 2000.
    [21] J. Li, P. Liu, H. Ding, and W. Cao, “Modeling Characterization and Optimization Design for PZT Transducer Used in Near Field Acoustic Levitation,” Sensors and Actuators: A Physical , Accept, 2010.
    [22] C. H. Kim, and J. G. Ih, “On the Horizontal Wobbling of an Object Levitated by Near-field Acoustic Levitation,” Ultrasonics, Vol. 46, pp. 331-335, 2007.
    [23] Acoustic Levitation Chamber, http://www.youtube.com/watch?v=94KzmB2bI7s
    [24] G. Reinhart, J. Hoeppner, “Non-Contact Handling Using High-Intensity Ultrasonics,” CIRP Annals - Manufacturing Technology, Vol. 49, pp. 5-8, 2000.
    [25] L. Yongjun, C. Chongde, and W. Bingbo, “High Undercooling of Bulk Water during Acoustic Levitation,” Science in China Series G, Vol. 46, pp. 259-267, 2003.
    [26] E. H. Trinh, “Compact Acoustic Levitation Device for Studies in Fluid Dynamics and Material Science in the Laboratory and Microgravity,” Review of Scientific Instrument, Vol. 56, pp. 2059-2065, 1985.
    [27] Y. Lu, C. Cao, and B.Wei, “High Undercooling of Bulk Water During Acoustic Levitation,” Science in China, Vol. 46, pp. 259-267, 2003.
    [28] J. Leiterer, F. Emmerling, J. Radnik, U. Bentrup, and A. B. ckner, “Flying Droplets as Model System for Spray Drying—An in Situ Synchrotron X-ray Scattering Study on Complex Oxides Catalyst Precursors,” Catalysis Today, Vol. 155, pp. 326-330, 2010
    [29] G. Holt, and G. M. Daniel, “Using Acoustic Levitation to Float Foams in Space,” Acoustical Society of America 136th Meeting Lay Language Papers, Norfolk, US, 1998.
    [30] A. L. Yarin, D. A. Weiss, G. Brenn, and D. Rensink, “Acoustically Levitated Drops: Drop Oscillation and Break-up Driven by Ultrasound Modulation,” International Journal of Multiphase Flow, Vol. 28, pp. 887-910, 2002.
    [31] T. Otsuka, and T. Nakane, “Ultrasonic Levitation for Liquid Droplet,” Japanese Journal of Applied Physics, Vol. 41, pp. 3259-3260, 2002.
    [32] R. Tuckermann, S. Bauerecker, and H. K. Cammenga, “The Generation of Octadecanol Monolayers on Acoustically Levitated Water Drops,” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 309, pp. 198-201, 2007.
    [33] W. J. Xie and B. Wei, “Parametric Study of Single-axis Acoustic Levitation,” American Institute of Physics, Vol. 79, pp. 881-883, 2001.
    [34] M. L. Ng, “Acoustic Levitator as a Tool for X-ray Tomography,” Technology report, 2006.
    [35] G. Hayward, “A Systems Feedback Representation of Piezoelectric Transducer Operational Impedance,” Ultrasonics, Vol. 22, pp. 153-162, 1984.
    [36] Y. Estanbouli, G. Hayward, S. N. Ramadas, and J. C. Barbenel, “A Block Diagram Model of the Thickness Mode Piezoelectric Transducer Containing Dual Oppositely Polarized Piezoelectric Zones,” IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 53, pp. 1028-1036, 2006.
    [37] G. Hayward, “A Systems Feedback Representation of Piezoelectric Transducer Operational Impedance,” Ultrasonics, Vol. 22, pp. 153-162, 1984.
    [38] G. Hayward, C. J. Mackeod, T. S. Durrani, “A Systems Model of the Thickness Mode Piezoelectric Transducer,” Journal of the Acoustical Society of America, Vol. 76, pp. 369-382, 1984.
    [39] J. Feenstra, J. Granstrom, and H. Sodano, “Energy Harvesting Through a Backpack Employing a Mechanically Amplified Piezoelectric Stack,” Mechanical Systems and Signal Processing, Vol. 22, pp. 721-734, 2008.
    [40] P. Harkness, A. Cardoni, J. Russell, and M. Lucas, “Designing a Hollow Langevin Transducer for Ultrasonic Coring,” Applied Mechanics and Materials, Vol. 24, pp. 65-70, 2010.
    [41] E. Moreno, P. Acevedo, M. Fuentes, A. Sotomayor, L. Borroto, “Design and Construction of a Bolt-clamped Langevin Transducer,” 2nd International Conference on Electrical and Electronics Engineering, Mexico, September, 2005.
    [42] A. Iula, F. Vazquez, M. Pappalardo, and J. A. Gallego, “Finite Element Three- dimensional Analysis of the Vibrational Behavior of the Langevin-type Transducer,”
    Ultrasonics, Vol. 40, pp. 513-517, 2002.
    [43] eFunda, Piezo Data:PZT-4, http://www.efunda.com/materials/piezo/material_data
    [44] 王愛玲, 祝錫晶, 吳秀玲, “功率超聲振動-加工技術,” 國防工業出版社, pp. 107-130, 2007.
    [45] L. Shuyu, “Study on the Multifrequency Langevin Ultrasonic Transducer,” Ultrasonics, Vol. 33, pp. 445-448, 1995.
    [46] J. G. Smits, “Iterative Method for Accurate Determination of the Real and Imaginary Parts of the Materials Coefficients of Piezoelectric Ceramics,” IEEE transactions on ultrasonics and sonics, vol. SU-23, pp. 393-402, 1976.
    [47] S. Sherrit, H. D. Wiederick, B. K. Mukherjee, and M. Sayer, “An Accurate Equivalent Circuit for the Unloaded Piezoelectric Vibrator in the Thickness Mode,” Journal of Physics D: Applied Physics, Vol. 30, pp. 2354-2363, 1997.
    [48] G. Martin, “Determination of Equivalent Circuit Constants of Piezoelectric Resonators of Moderately Low Q by Absolute-admittance Measurements,” Journal of the Acoustical Society of America, Vol. 26, pp. 413-420, 1954.
    [49] K. T. Chang, M. Ouyang, “Open-circuit Test of a PZT Vibrator and Its Applications,” Ultrasonics, Vol. 41, pp. 15-23, 2003.
    [50] F. Xing, B. Dong, and Z. Li, “Impedance Spectroscopic Studies of Cement-based Piezoelectric Ceramic Composites,” Composites Science and Technology, Vol. 68, pp. 2456-2460, 2008.
    [51] K. S. Van Dyke, “The Electric Network Equivalent of a Piezoelectric Resonator,” Physical Review Letters, Vol. 25, pp. 895, 1925.

    [52] S. H. Wang, W. S. Yao, W. S. Laio, and M. C. Tsai, “Design and Analysis of a Unimorph Piezoceramic Generator with Cantilever Structure in a Low-frequency Environment,” Proc. IMechE Part L: J. Materials: Design and Applications, Vol. 225, pp. 11-21, 2010.
    [53] G. Hayward, “A Systems Feedback Representation of Piezoelectric Transducer Operational Impedance,” Ultrasonics, Vol. 22, pp. 153-162, 1984.
    [54] M. Goldfarb, and N. Celanovic, “Modeling Piezoelectric Stack Actuators for Control of Micromanipulation,” IEEE Control Systems Magazine, Vol. 17, pp. 69-79, 1997.
    [55] H. J. M. T. A. Adriaens, W. L. de Koning, and R. Banning, “Modeling Piezoelectric Actuators,” IEEE/ASME Trans. Mechatronics, Vol. 5, pp. 331-341, 2000.
    [56] G. Hayward, “Using a Block Diagram Approach for the Evaluation of Electrical Loading Effects on Piezoelectric Reception,” Ultrasonics, Vol. 24, pp. 156-163, 1986.
    [57] Y. Estanbouli, G. Hayward,S. N. Ramadas, and J. C. Barbenel, “A Block Diagram Model of the Thickness Mode Piezoelectric Transducer Containing Dual Oppositely Polarized Piezoelectric Zones,” IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, Vol. 53, pp. 1028-1036, 2006.
    [58] S. J. Mason, “Feedback Theory - Further Properties of Signal Flow Graphs,” Proceedings of the IRE, Vol. 44, pp. 920-926, 1956.
    [59] S. F. Ling, and Y. Xie, “Detecting Mechanical Impedance of Structures Using the Sensing Capability of a Piezoceramic Inertial Actuator,” Sensors and Actuators A: Physical, Vol. 93, pp. 243-249, 2001.
    [60] IRE Standards on Piezoelectric Crystals, Proceedings of the IRE, Vol. 37, pp.1378-1395, 1949.
    [61] W. Wang, Z. Yang, “A Compact Piezoelectric Stack Actuator and Its Simulation in Vibration Control,” Tsinghua Science and Technology, Vol. 14, pp. 43-48, 2009.
    [62] S. H. Wang, and M. C. Tsai, “Dynamic Modeling of Thickness-mode Piezoelectric Transducer Using the Block Diagram Approach,” Ultrasonics, Vol. 51, pp. 617-624, 2011.
    [63] Y. Tian, R. G. Holt, and R. E. Apfel, “Investigation of Liquid Surface Rheology of Surfactant Solutions by Droplet Shape Oscillations: Experiments,” Journal of Colloid and Interface Science, Vol. 187, pp. 1-10, 1997.
    [64] E. H. Trinh, and C. J. Hsu, “Acoustic Levitation Methods for Density Measurements,” Journal of the Acoustical Society of America, Vol. 80, pp. 1757-1761, 1986.
    [65] H. Mitome, “Ultrasonic Levitation and Accompanying Acoustic Streaming,” Japanese Journal of Applied Physics, Vol. 28, pp. 146-148, 1988.
    [66] A. L. Yarin1, M. Pfaffenlehner, and C. Tropea, “On the Acoustic Levitation of Droplets,” The Journal of Fluid Mechanics, Vol. 356, pp. 65-91, 1998.
    [67] Y. Tian, and R. E. Apfel, “A Novel Multiple Drop Levitator for the Study of Drop Arrays,” Journal of Aerosol Science, Vol. 27, pp. 721-737, 1996.
    [68] M. R. Bai, and J. H. Lin, “Source Identification System Based on the Time-domain Near-field Equivalence Source Imaging: Fundamental Theory and Implementation,” Journal of sound and vibration, Vol. 307, pp. 202-225, 2007.
    [69] R. C. Colwell, A. W. Friend, and D. A. M. Graw, “The Velocity of Sound in Air,” Journal of the Franklin Institute, Vol. 225, pp. 579-583, 1938.
    [70] D. Guyomar, N. Aurelle, C. Richard, P. Gonnard, and L. Eyraud, “Nonlinearities in Langevin Transducer,” IEEE Ultrasonics symposium, Vol. 2, pp. 925-928, 1994.
    [71] K. Ishii, N. Akimoto, S. Tashirio, and H. Igarashi, “Jump Phenomena of Current in Piezoelectric-ceramic Vibrators under High Power Conditions,” Journal of the European Ceramic Society, Vol. 19, pp. 1157-1160, 1999.
    [72] S. K. Chung, and E. H. Trinh, “Containerless Protein Crystal Growth in Rotating Levitated Drops,” Journal of Crystal Growth, Vol. 194, pp. 384-397, 1998.
    [73] Condenser Microphone,
    http://www.mediacollege.com/audio/microphones/condenser.html.
    [74] A. Holm, and H. W. Persson, “Measurements of Airborne Ultrasound with Optical Diffraction Tomography,” IEEE Ultrasonics Symposium, pp. 961-964, 1991.
    [75] H. Takei, T. Hasegawa, K. Nakamura, and S. Ueha, “Measurement of Intense Ultrasound Field in Air Using Fiber Optic Probe,” Japanese Journal of Applied Physics, Vol. 46, pp. 4555-4557, 2007.
    [76] T. Kozuka, T. Tuziuti, and H. Mitome,” Control of Position of a Particle Using a Standing Wave Field Generated by Crossing Sound Beams,” IEEE Ultrasonics Symposium, Vol. 1, pp. 657-660,1998.
    [77] S. Kapishnikov, V. Kantsler, and V. Steinberg, “Continuous Particle Size Separation and Size Sorting Using Ultrasound in a Microchannel,” Journal of Statistical Mechanics:Theory and Experiment, Vol. 2006, pp.1-8, 2006.
    [78] P. Zheng, E. Li, J. Zhao, J. Di, W. Zhou, H. Wang, and R. Zhang, “Visualized Measurement of the Acoustic Levitation Field Based on Digital Holography with Phase Multiplication,” Optics Communications, Vol. 282, pp. 4339-4344, 2009.
    [79] K. S. Rao, P. M. Krishna, T. S. Latha, and D. M. Prasad, “Impedance-spectroscopy Analysis and Piezoelectric Properties of Pb2KNb5O15 Ceramics,” Materials Science and Engineering, Vol. 131, pp. 127-134, 2006.
    [80] R. Date, S. Taicashita, and E. Pukada, “Temperature Variation of Piezoelectric Moduli in Oriented Poly,” Journal of polymer science, Vol. 8, pp. 61-70, 1970.
    [81] W. J. Tsai, C. W. Cheng, M. C. Tsai, W. S. Yao, and S. H. Wang, “Method for Removing Micro-debris and Device of the Same,” U. S. patent, US20090303840, December 10, 2009.

    下載圖示 校內:2014-11-18公開
    校外:2016-11-18公開
    QR CODE