簡易檢索 / 詳目顯示

研究生: 陳妍伶
Chen, Yen-Ling
論文名稱: 分散式無線感知網路資源管理演算法
Resource Allocation Algorithm for Distributed Wireless Cognitive Radio Network
指導教授: 郭文光
Kuo, Wen-Kuang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 43
中文關鍵詞: 演算法感知網路跨層級設計分散式系統對偶分解
外文關鍵詞: Algorithm, cognitive radio network, cross-layer design, distributed system, dual decomposition
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文考慮在一感知網路中,無基礎建設支持,次級使用者(secondary user)在不干擾到主要使用者(primary user)的前提之下,藉由彼此之間的訊息交換,進行分散式的網路系統效能最佳化。本論文之系統模型,為包括實體層(physical layer)、資料鏈結層(data-link layer)、以及網路層(network layer)之跨層級設計,並且此系統模型將實作於分時系統(time slotted system)之中。其中實體層涉及傳輸功率之控制,資料鏈結層則含括了通道的分配與時間的排程,而網路層則涉及繞送路徑之選擇。本論文對於所考慮之系統模型,設計一內圈及一外圈演算法,分別用來解決非凸以及混和整數規劃問題。在內圈,我們以最佳化理論之對偶分解(dual decomposition),使用次梯度法(subgradient)來達到分散式網路的功效。在外圈,我們則實做了兩種分配時槽與通道的方法,啟發式地解決分散式網路最大流量問題。根據實驗結果,我們的演算法能夠對於次級使用者進行穩定而有效的網路資源分配。

    We consider the secondary users have to carry out a distributed network optimization through the exchange of information between each other without infrastructure support in a cognitive radio network. Therefore, we propose the cross-layer system model including physical layer, data link layer and network layer. The physical layer involves the control of transmission power and data link layer includes the channel assignment and time scheduling while the network layer involves the selection of the routing path. For this system model, we design an inner loop and an outer loop algorithm to solve the nonconvex problem and the mixed-integer programming problem. In the inner loop, we use the gradient method to achieve the functionality of the distributed system. In the outer loop, we implement two kinds of method to allocate the time slots and channel to solve the network maximum throughput problem heuristically. According our modeling, the proposed algorithm is an effective resource allocator implemented distributed wireless cognitive radio network.

    1. 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 國內外相關研究 3 2. 系統模型與問題陳述 6 2.1 感知網路系統 6 2.2 數學模型介紹 7 2.2.1 限制條件(constraints) 7 2.2.1.1 最大傳輸功率限制 8 2.2.1.2 感知網路限制 8 2.2.1.3 半雙工限制 8 2.2.1.4 通道容量限制 9 2.2.1.5 流量守恆 10 2.2.2 目標函式(objective function) 10 3. 研究方法與原因 12 3.1 內圈演算法 12 3.2 外圈演算法 17 3.2.1 路徑解析函式 18 3.2.1.1 搜尋來源端及目的地端 18 3.2.2 半雙工校正函式 20 3.2.2.1 鏈結與通道使用狀態設定 20 3.2.2.2 路徑的連貫 21 3.2.2.3 路徑流量的提昇 23 3.2.2.4 最大流量及最大路徑數量分配 24 3.3 程式結束條件 26 4. 模擬結果 27 5. 結論 31 參考文獻 32 附錄 A. 流程圖 35 附錄 B. 節點座標 43

    [1] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201-220, Feb. 2005.
    [2] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty, "NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey," Comput. Netw., vol. 50, no. 13, pp. 2127-2159, Sept. 2006.
    [3] J. Mitola, Cognitive radio: An integrated agent architecture fr software defined radio. Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden, 2000.
    [4] Y. Yuan, P. Bahl, R. Chandra, P. A. Chou, J. I. Ferrell, T. Moscibroda, S. Narlanka, Y. Wu, KNOWS: Kognitiv Networking Over White Spaces, in: Proceedings of IEEE Symposiumon New Frontierin Dynamic Spectrum Access Netowrk (DySPAN), 2007.
    [5] J. Jia, Q. Zhang and X. Shen, HC-MAC: A Hardware-Constrained Cognitive MAC for Efficient Spectrum Management, IEEE J. Selected Areas Commun. 26 (1) (2008), pp. 106-117.
    [6] I. F. Akyildiz, Won-Yeol Lee, M. C. Vuran, and S. Mohanty, "A Survey on Spectrum Management in Cognitive Radio Networks," IEEE Communications Magazine, Vol. 46, Issue 4, pp. 40-48, Apr. 2008.
    [7] X. Lin, N. Shroff, and R. Srikant, A Tutorial on Cross-Layer Optimization in Wireless Networks, IEEE Journal on Selected Areas in Communications on Non-Linear Optimization of Communication Systems, vol. 24, Issue 8, pp. 1452-1463, June 2006.
    [8] M. Johansson and L. Xiao, “Cross-Layer Optimization of Wireless Networks Using Nonlinear Column Generation,” IEEE Trans. Wireless Comm., vol. 5, no. 2, pp. 435-445, Feb. 2006.
    [9] W. Yu. Competition and cooperation in multi-user communication environments. Ph.D. Dissertation, Stanford University, Stanford, CA, 2002.
    [10] R. Cendrillon, W. Yu, M. Moonen, J. Verlinden, and T. Bostoen. Optimal multiuser spectrum management for digital subscriber lines. In Proceedings of the IEEE ICC Conference, volume 1, pages 1-5, July 2004.
    [11] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman. Efficient power control via pricing in wireless data networks. IEEE Transactions on Communications, 50(2):291-303, February 2002.
    [12] W. Fan, K. Marwan, and C. Shuguang, Price-based spectrum management in cognitive radio networks, Selected Topics in Signal Processing, IEEE Journal of, vol. 2, no. 1, pp. 74-87, Feb. 2008.
    [13] S. Chena, A. M. Wyglinski, Efficient spectrum utilization via cross-layer optimization in distributed cognitive radio networks, Computer Communications, vol. 32, Issue 18, pp. 1931-1943, December 2009.
    [14] C. Peng, H. Zheng, B.Y. Zhao, Utilization and fairness in spectrum assignment for opportunistic spectrum access, Mobile Network Applications 11 (4) (2006) 555–576.
    [15] Y. Shi, Y.T. Hou, A distributed optimization algorithm for multi-hop cognitive radio networks, in: Proceedings of the 27th IEEE Conference on Computer Communications (INFOCOM), April 2008, pp. 1292–1300.
    [16] L. Cao, H. Zheng, Distributed spectrum allocation via local bargaining, in: Proceedings of the Second Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), September 2005, pp. 475–486.
    [17] B.-J. Ko, V. Misra, J. Padhye, D. Rubenstein, Distributed channel assignment in multi-radio 802.11 mesh networks, in: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), March 2007, pp. 3978–3983.
    [18] Y. Xing, C. Mathur, M. Haleem, R. Chandramouli, and K. Subbalak-shi, “Dynamic spectrum access with qos and interference temperature constraints,” IEEE Trans on Mobile Computing, 2007, 6(4): 423-432.
    [19] P. Cheng, Z. Zhang, H. H. Chen, and P. Qiu. Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems. IET Communications, 2(6):815–826, July 2008.
    [20] R. C. Nasipuri and S. Das, “Performance of multipath routing for on-demand protocols in mobile ad hoc networks,” ACM Mobile Networks and Applications (MONET), 6(4): 339-349, 2001.
    [21] A. Tsirigos and ZJ Haas. Multi-path routing in the presence of frequent topological changes. IEEE Communications Magazine, November 2001.
    [22] M. Chiang, “Balancing Transport and Physical Layers in Wireless Multihop Networks: Jointly Optimal Congestion Control and Power Control,” IEEE Journal of Selected Areas in Communications, vol. 23, no. 1, pp. 104-116, January 2005.
    [23] Sahinidis, N. V., BARON: A general purpose global optimization software package, Journal of Global Optimization, 8(2), 201-205, 1996.
    [24] C. S. Adjiman, S. Dallwig, C. A. Floudas, A. Neumaier; A Global Optimization Method, αBB, for General Twice-Differentiable Constrained NLPs -- I. Theoretical Advances, Computers and Chemical Engineering, 1998; 22:1137-1158.
    [25] Dash Optimization. XPRESS-MP. http://www.dash.co.uk/, 2001.
    [26] J. D. Pintér, 2003, GAMS/LGO nonlinear solver suite: key features, usage, and numerical performance. GAMS Development Corporation - Solver Documentation Pages. http://www.gams.com/solvers/solvers.htm#LGO.
    [27] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Prentice Hall,1989.
    [28] D. P. Bertsekas, Nonlinear Programming, second ed. Athena Scientific, 1999.
    [29] M. Chiang, “To Layer or Not to Layer: Balancing Transport and Physical Layers in Wireless Multihop Networks,” Proc. IEEE INFOCOM, vol. 4, pp. 2525-2536, Mar. 2004.
    [30] L. Xiao, M. Johansson, and S. P. Boyd, “Simultaneous Routing and Resource Allocation via Dual Decomposition,” IEEE Trans. Comm., vol. 52, no. 7, pp. 1136-1144, July 2004.
    [31] R. Madan and S. Lall, “Distributed Algorithms for Maximum Lifetime Routing in Wireless Sensor Networks,” Proc. 47th Ann. IEEE Global Telecomm. Conf. (GLOBECOM’04), pp. 748-753, 2004.
    [32] N. Z. Shor. Minimization Methods for Non-differentiable Functions. Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1985.

    無法下載圖示 校內:2015-08-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE