簡易檢索 / 詳目顯示

研究生: 李芷薇
Li, Chih-Wei
論文名稱: 探討TARBP2於肝癌細胞中造成蕾莎瓦抗藥性的機轉
Role of TARBP2 in Regulating Sorafenib Resistance of Hepatocellular Carcinoma Cells
指導教授: 陳百昇
Chen, Pai-Sheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 62
中文關鍵詞: TARBP2肝細胞癌蕾莎瓦抗藥性
外文關鍵詞: TARBP2, hepatocellular carcinoma, sorafenib resistance
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝細胞癌的致死率是全球排名第二,且在台灣的五年存活率大約只有20 %。蕾莎瓦是一種口服的多激酶抑制劑,是用來治療晚期肝細胞癌病人的第一線標靶治療藥物,但是蕾莎瓦的治療效果很短暫,易有抗藥性發生且緩解率很低,所以找出蕾莎瓦抗藥性的機制是很重要的。TARBP2是一個多功能的核糖核酸結合蛋白,例如在Ewing肉瘤中,TARBP2會影響癌症幹細胞的特性表現,但是在肝細胞癌中TARBP2的角色還是未確定的。我們的結果顯示在蕾莎瓦抗藥性的肝癌細胞中,TARBP2會顯著的減少。TARBP2的增加會使肝癌細胞降低對蕾莎瓦的抗藥性,並且當TARBP2下降後,肝癌細胞又會再對蕾莎瓦產生抗藥性。在Huh7 / SR和PLC5 / SR細胞中TARBP2的蛋白穩定性會下降。此外,在蕾莎瓦抗藥性細胞中,TARBP2會透過增加Nanog的降解速度來抑制Nanog的表現,而TARBP2的減少會使Nanog的蛋白穩定性上升,進而使Nanog表現量增加。結果顯示TARBP2的下降導致蕾莎瓦抗藥性的發生是透過Nanog增加所造成。這項研究說明了TARBP2在蕾莎瓦抗藥性肝細胞癌的作用。

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths in the world. The five-year survival rate is about twenty percent in Taiwan. Sorafenib is a multikinase inhibitor used in first-line treatment for patients with advanced HCC. However, the therapeutic effects of sorafenib are temporary and the response rate is low. Thus, it is important to investigate the molecular mechanism leading to sorafenib resistance. TARBP2 is a multifaceted RNA-binding protein regulating cancer stem cell (CSC) properties in Ewing sarcoma. However, the role of TARBP2 in HCC remains unknown. Our results showed that TARBP2 is significantly downregulated in sorafenib-resistant (SR) HCC cells. Overexpression of TARBP2 re-sensitized SR cells to sorafenib treatment. Consistently, knockdown of TARBP2 enhanced sorafenib resistance in parental Huh7 and PLC5 cells. The protein stability of TARBP2 was decreased in Huh7/SR and PLC5/SR cells. TARBP2 suppresses Nanog protein expression in Huh7/SR cells through accelerating Nanog protein degradation, whereas knockdown of TARBP2 promotes Nanog protein expression in Huh7 cells through stabilization of Nanog protein. These data suggest that TARBP2 protein destabilization induces sorafenib resistance possibly through upregulation of Nanog in SR cells. This study demonstrates a functional role of TARBP2 in regulating sorafenib resistance in HCC cells.

    Contents 中文摘要 I Abstract II 致謝 III Contents IV Figure index VI Abbreviations VII Chapter 1. Introduction 1 1.1 Hepatocellular carcinoma 1 1.2 Hepatocellular carcinoma and sorafenib 3 1.3 TARBP2 5 1.4 Cancer stem cell and sorafenib resistance 6 Chapter 2. Materials and Methods 8 2.1 Cell lines and cell culture 8 2.2 Western blot analysis 8 2.3 Quantitative reverse transcription PCR 9 2.4 Cell viability analysis 10 2.5 shRNA knockdown 10 2.6 Bioinformatics analysis 11 2.7 Statistical analysis 11 Chapter 3. Results 12 3.1 TARBP2 decreases in sorafenib-resistant HCC cells 12 3.2 Overexpression of TARBP2 re-sensitizes sorafenib-resistant cells to sorafenib treatment 12 3.3 Knockdown of TARBP2 enhances sorafenib resistance in HCC cells 13 3.4 TARBP2 protein is destabilized in sorafenib-resistant cells 13 3.5 Degradation of TARBP2 protein is through autophagic-lysosomal pathway in SR cells 14 3.6 TARBP2 inhibits Nanog protein expression in HCC cells 15 3.7 TARBP2 inhibits Nanog protein expression through enhancement of Nanog protein degradation in HCC cells 16 3.8 TARBP2 reduces sorafenib-resistance of HCC cells through downregulation of Nanog 17 3.9 Low expression of TARBP2 correlates with poor clinical outcome in liver cancer 17 3.10 Schematic diagram of downregulation of TARBP2 enhances sorafenib resistance through stabilization of Nanog protein in HCC cells 18 Chapter 4. Discussion 19 References 24 Figures 33 Appendix 53 Appendix 1. List for primers used in this study 53 Appendix 2. List of primary antibodies used in this study 53   Figure index Figure 1. TARBP2 expression decreases in SR cells 33 Figure 2. TARBP2 overexpression sensitizes SR cells to sorafenib 34 Figure 3. TARBP2 downregulation enhances sorafenib resistance in parental cells 35 Figure 4. The stability of TARBP2 protein is decreased in SR cells 36 Figure 5. The protein degradation pathway of TRABP2 38 Figure 6. TARBP2 suppresses Nanog protein expression in HCC cells 41 Figure 7. Downregulation of TARBP2 enhances Nanog protein expression through inhibition of Nanog protein degradation in HCC cells 43 Figure 8. Downregulation of TARBP2 enhances sorafenib resistance through stabilization of Nanog protein in HCC cells 46 Figure 9. Downregulation of TARBP2 correlates with poor survival rates of HCC patients 48 Figure 10. Schematic diagram of TARBP2-downregulation induces sorafenib resistance through stabilization of Nanog protein in HCC 52

    References
    1. Rinninella, E., et al., Chemotherapy for Hepatocellular Carcinoma: Current Evidence and Future Perspectives. J Clin Transl Hepatol, 2017. 5(3): p. 235-248.
    2. Llovet, J.M., et al., Hepatocellular carcinoma. Nat Rev Dis Primers, 2016. 2: p. 16018.
    3. Waghray, A., A.R. Murali, and K.N. Menon, Hepatocellular carcinoma: From diagnosis to treatment. World J Hepatol, 2015. 7(8): p. 1020-9.
    4. Zhu, R.X., et al., Epidemiology of Hepatocellular Carcinoma in the Asia-Pacific Region. Gut Liver, 2016. 10(3): p. 332-9.
    5. Balogh, J., et al., Hepatocellular carcinoma: a review. J Hepatocell Carcinoma, 2016. 3: p. 41-53.
    6. Montalto, G., et al., Epidemiology, risk factors, and natural history of hepatocellular carcinoma. Ann N Y Acad Sci, 2002. 963: p. 13-20.
    7. Janevska, D., V. Chaloska-Ivanova, and V. Janevski, Hepatocellular Carcinoma: Risk Factors, Diagnosis and Treatment. Open Access Maced J Med Sci, 2015. 3(4): p. 732-6.
    8. Michielsen, P.P., S.M. Francque, and J.L. van Dongen, Viral hepatitis and hepatocellular carcinoma. World J Surg Oncol, 2005. 3: p. 27.
    9. Waly Raphael, S., Z. Yangde, and C. Yuxiang, Hepatocellular carcinoma: focus on different aspects of management. ISRN Oncol, 2012. 2012: p. 421673.
    10. Gomaa, A.I., et al., Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol, 2008. 14(27): p. 4300-8.
    11. American Cancer Society., Cancer facts & figures. The Society: Atlanta, GA. p. volumes.
    12. Polesel, J., et al., The impact of obesity and diabetes mellitus on the risk of hepatocellular carcinoma. Ann Oncol, 2009. 20(2): p. 353-7.
    13. El-Serag, H.B., H. Hampel, and F. Javadi, The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol, 2006. 4(3): p. 369-80.
    14. Forner, A., et al., Treatment of intermediate-stage hepatocellular carcinoma. Nat Rev Clin Oncol, 2014. 11(9): p. 525-35.
    15. Llovet, J.M., C. Bru, and J. Bruix, Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis, 1999. 19(3): p. 329-38.
    16. Colagrande, S., et al., Advanced hepatocellular carcinoma and sorafenib: Diagnosis, indications, clinical and radiological follow-up. World J Hepatol, 2015. 7(8): p. 1041-53.
    17. Forner, A., J.M. Llovet, and J. Bruix, Hepatocellular carcinoma. Lancet, 2012. 379(9822): p. 1245-55.
    18. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.
    19. El-Serag, H.B., et al., Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology, 2008. 134(6): p. 1752-63.
    20. Lin, S., K. Hoffmann, and P. Schemmer, Treatment of hepatocellular carcinoma: a systematic review. Liver Cancer, 2012. 1(3-4): p. 144-58.
    21. Raza, A. and G.K. Sood, Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol, 2014. 20(15): p. 4115-27.
    22. Pinter, M., et al., Advanced-stage hepatocellular carcinoma: transarterial chemoembolization versus sorafenib. Radiology, 2012. 263(2): p. 590-9.
    23. Giannini, E.G., et al., Prognosis of untreated hepatocellular carcinoma. Hepatology, 2015. 61(1): p. 184-90.
    24. Gauthier, A. and M. Ho, Role of sorafenib in the treatment of advanced hepatocellular carcinoma: An update. Hepatol Res, 2013. 43(2): p. 147-54.
    25. Cervello, M., et al., Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle, 2012. 11(15): p. 2843-55.
    26. Carlomagno, F., et al., BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst, 2006. 98(5): p. 326-34.
    27. Wilhelm, S.M., et al., BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 2004. 64(19): p. 7099-109.
    28. Wellbrock, C., M. Karasarides, and R. Marais, The RAF proteins take centre stage. Nat Rev Mol Cell Biol, 2004. 5(11): p. 875-85.
    29. Liu, L., et al., Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res, 2006. 66(24): p. 11851-8.
    30. Aravalli, R.N., C.J. Steer, and E.N. Cressman, Molecular mechanisms of hepatocellular carcinoma. Hepatology, 2008. 48(6): p. 2047-63.
    31. Zhai, B., et al., Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol Cancer Ther, 2014. 13(6): p. 1589-98.
    32. Wang, W., et al., Sorafenib exerts an anti-keloid activity by antagonizing TGF-beta/Smad and MAPK/ERK signaling pathways. J Mol Med (Berl), 2016. 94(10): p. 1181-1194.
    33. Keating, G.M. and A. Santoro, Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs, 2009. 69(2): p. 223-40.
    34. Guan, Y.S. and Q. He, Sorafenib: activity and clinical application in patients with hepatocellular carcinoma. Expert Opin Pharmacother, 2011. 12(2): p. 303-13.
    35. Wrzesinski, S.H., T.H. Taddei, and M. Strazzabosco, Systemic therapy in hepatocellular carcinoma. Clin Liver Dis, 2011. 15(2): p. 423-41, vii-x.
    36. Cheng, A.L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2009. 10(1): p. 25-34.
    37. O'Connor, R., et al., Drug resistance in cancer - searching for mechanisms, markers and therapeutic agents. Expert Opin Drug Metab Toxicol, 2007. 3(6): p. 805-17.
    38. Ito, Y., et al., Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br J Cancer, 2001. 84(10): p. 1377-83.
    39. Ezzoukhry, Z., et al., EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer, 2012. 131(12): p. 2961-9.
    40. Zhu, Y.J., et al., New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin, 2017. 38(5): p. 614-622.
    41. Paez-Ribes, M., et al., Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 2009. 15(3): p. 220-31.
    42. Liang, Y., et al., Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1alpha inhibition in hepatocellular carcinoma. Hepatology, 2013. 57(5): p. 1847-57.
    43. Chow, A.K., et al., The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS One, 2013. 8(11): p. e78675.
    44. Blivet-Van Eggelpoel, M.J., et al., Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J Hepatol, 2012. 57(1): p. 108-15.
    45. Morgensztern, D. and H.L. McLeod, PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs, 2005. 16(8): p. 797-803.
    46. Shimizu, S., et al., Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer, 2012. 131(3): p. 548-57.
    47. Gatignol, A., et al., Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science, 1991. 251(5001): p. 1597-600.
    48. Sanghvi, V.R. and L.F. Steel, The cellular TAR RNA binding protein, TRBP, promotes HIV-1 replication primarily by inhibiting the activation of double-stranded RNA-dependent kinase PKR. J Virol, 2011. 85(23): p. 12614-21.
    49. Wilson, R.C., et al., Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell, 2015. 57(3): p. 397-407.
    50. Fareh, M., et al., TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun, 2016. 7: p. 13694.
    51. Abdelmohsen, K., et al., Regulation of senescence by microRNA biogenesis factors. Ageing Res Rev, 2012. 11(4): p. 491-500.
    52. Goodarzi, H., et al., Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins. Nature, 2014. 513(7517): p. 256-60.
    53. Yu, X. and Z. Li, The role of TARBP2 in the development and progression of cancers. Tumour Biol, 2016. 37(1): p. 57-60.
    54. Garcia, M.A., et al., Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev, 2006. 70(4): p. 1032-60.
    55. Kim, Y., et al., Deletion of human tarbp2 reveals cellular microRNA targets and cell-cycle function of TRBP. Cell Rep, 2014. 9(3): p. 1061-74.
    56. Lin, X., et al., Up-regulation and worse prognostic marker of cytoplasmic TARBP2 expression in obstinate breast cancer. Med Oncol, 2014. 31(4): p. 868.
    57. Caramuta, S., et al., Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma. Endocr Relat Cancer, 2013. 20(4): p. 551-64.
    58. Fu, X., et al., The activity and expression of microRNAs in prostate cancers. Mol Biosyst, 2010. 6(12): p. 2561-72.
    59. Sand, M., et al., The miRNA machinery in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases and benign melanocytic nevi. Cell Tissue Res, 2012. 350(1): p. 119-26.
    60. De Vito, C., et al., A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma. Cancer Cell, 2012. 21(6): p. 807-21.
    61. Garre, P., et al., Reassessing the TARBP2 mutation rate in hereditary nonpolyposis colorectal cancer. Nat Genet, 2010. 42(10): p. 817-8; author reply 818.
    62. Rahman, M., et al., The cancer stem cell hypothesis: failures and pitfalls. Neurosurgery, 2011. 68(2): p. 531-45; discussion 545.
    63. Yang, Z.F., et al., Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 2008. 47(3): p. 919-28.
    64. Machida, K., et al., Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proc Natl Acad Sci U S A, 2009. 106(5): p. 1548-53.
    65. Zhou, B.B., et al., Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov, 2009. 8(10): p. 806-23.
    66. Kreso, A., et al., Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 2013. 339(6119): p. 543-8.
    67. Kreso, A. and J.E. Dick, Evolution of the cancer stem cell model. Cell Stem Cell, 2014. 14(3): p. 275-91.
    68. Sun, C., et al., NANOG promotes liver cancer cell invasion by inducing epithelial-mesenchymal transition through NODAL/SMAD3 signaling pathway. Int J Biochem Cell Biol, 2013. 45(6): p. 1099-108.
    69. Karoubi, G., et al., OCT4 expression in human non-small cell lung cancer: implications for therapeutic intervention. Interact Cardiovasc Thorac Surg, 2009. 8(4): p. 393-7.
    70. Leis, O., et al., Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene, 2012. 31(11): p. 1354-65.
    71. Dai, X., et al., OCT4 regulates epithelial-mesenchymal transition and its knockdown inhibits colorectal cancer cell migration and invasion. Oncol Rep, 2013. 29(1): p. 155-60.
    72. Di, C. and Y. Zhao, Multiple drug resistance due to resistance to stem cells and stem cell treatment progress in cancer (Review). Exp Ther Med, 2015. 9(2): p. 289-293.
    73. Singh, A. and J. Settleman, EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010. 29(34): p. 4741-51.
    74. Vinogradov, S. and X. Wei, Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond), 2012. 7(4): p. 597-615.
    75. Kobayashi, I., et al., Oct4 plays a crucial role in the maintenance of gefitinib-resistant lung cancer stem cells. Biochem Biophys Res Commun, 2016. 473(1): p. 125-132.
    76. Lee, M., et al., Prognostic impact of the cancer stem cell-related marker NANOG in ovarian serous carcinoma. Int J Gynecol Cancer, 2012. 22(9): p. 1489-96.
    77. Piva, M., et al., Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med, 2014. 6(1): p. 66-79.
    78. Byun, S.H., et al., TRBP maintains mammalian embryonic neural stem cell properties by acting as a novel transcriptional coactivator of the Notch signaling pathway. Development, 2017. 144(5): p. 778-783.
    79. Pevny, L.H. and S.K. Nicolis, Sox2 roles in neural stem cells. Int J Biochem Cell Biol, 2010. 42(3): p. 421-4.
    80. Cornaz-Buros, S., et al., Targeting cancer stem-like cells as an approach to defeating cellular heterogeneity in Ewing sarcoma. Cancer Res, 2014. 74(22): p. 6610-22.
    81. Rhodes, D.R., et al., ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 2004. 6(1): p. 1-6.
    82. Aguirre-Gamboa, R., et al., SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS One, 2013. 8(9): p. e74250.
    83. Fernandez-Ricaud, L., et al., PRECOG: a tool for automated extraction and visualization of fitness components in microbial growth phenomics. BMC Bioinformatics, 2016. 17: p. 249.
    84. Belle, A., et al., Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci U S A, 2006. 103(35): p. 13004-9.
    85. Pan, T., et al., The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain, 2008. 131(Pt 8): p. 1969-78.
    86. Rubinsztein, D.C., The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 2006. 443(7113): p. 780-6.
    87. Ciechanover, A., Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol, 2005. 6(1): p. 79-87.
    88. Deschenes-Simard, X., et al., Cellular senescence and protein degradation: breaking down cancer. Cell Cycle, 2014. 13(12): p. 1840-58.
    89. Han, Y.H., et al., The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol Rep, 2009. 22(1): p. 215-21.
    90. Choi, K.S., Autophagy and cancer. Exp Mol Med, 2012. 44(2): p. 109-20.
    91. Hart, P.D. and M.R. Young, Ammonium chloride, an inhibitor of phagosome-lysosome fusion in macrophages, concurrently induces phagosome-endosome fusion, and opens a novel pathway: studies of a pathogenic mycobacterium and a nonpathogenic yeast. J Exp Med, 1991. 174(4): p. 881-9.
    92. Kuma, A., et al., The role of autophagy during the early neonatal starvation period. Nature, 2004. 432(7020): p. 1032-6.
    93. Komatsu, M., et al., Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 2005. 169(3): p. 425-34.
    94. Zhou, J., et al., Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res, 2013. 23(4): p. 508-23.
    95. White, E., The role for autophagy in cancer. J Clin Invest, 2015. 125(1): p. 42-6.
    96. Liu, B., et al., Autophagy facilitates the sorafenib resistance of hepatocellular carcinoma cells. West Indian Med J, 2013. 62(8): p. 698-700.
    97. Yamamoto, A., et al., Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct, 1998. 23(1): p. 33-42.
    98. Jung, H.J., et al., The anticancer effect of chaetocin is enhanced by inhibition of autophagy. Cell Death Dis, 2016. 7: p. e2098.
    99. Klionsky, D.J., et al., A unified nomenclature for yeast autophagy-related genes. Dev Cell, 2003. 5(4): p. 539-45.
    100. Shan, J., et al., Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology, 2012. 56(3): p. 1004-14.
    101. Pan, G. and J.A. Thomson, Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res, 2007. 17(1): p. 42-9.
    102. Gawlik-Rzemieniewska, N. and I. Bednarek, The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells. Cancer Biol Ther, 2016. 17(1): p. 1-10.
    103. Liu, S., et al., NANOG regulates epithelial-mesenchymal transition and chemoresistance through activation of the STAT3 pathway in epithelial ovarian cancer. Tumour Biol, 2016. 37(7): p. 9671-80.
    104. Wang, D., et al., Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget, 2014. 5(21): p. 10803-15.
    105. Jeter, C.R., et al., Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells, 2009. 27(5): p. 993-1005.
    106. Chiou, S.H., et al., Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res, 2010. 70(24): p. 10433-44.
    107. Lin, T., Y.Q. Ding, and J.M. Li, Overexpression of Nanog protein is associated with poor prognosis in gastric adenocarcinoma. Med Oncol, 2012. 29(2): p. 878-85.
    108. Meng, H.M., et al., Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther, 2010. 9(4): p. 295-302.
    109. Jeter, C.R., et al., NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene, 2011. 30(36): p. 3833-45.
    110. Huang, Z.J., et al., Reduced tumorigenicity and drug resistance through the downregulation of octamer-binding protein 4 and Nanog transcriptional factor expression in human breast stem cells. Mol Med Rep, 2015. 11(3): p. 1647-54.
    111. Jeter, C.R., et al., Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells, 2015. 33(8): p. 2381-90.
    112. Mathieu, J., et al., HIF induces human embryonic stem cell markers in cancer cells. Cancer Res, 2011. 71(13): p. 4640-52.
    113. Lin, T., et al., p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol, 2005. 7(2): p. 165-71.
    114. Moretto-Zita, M., et al., Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci U S A, 2010. 107(30): p. 13312-7.
    115. Kim, S.H., et al., ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal. Stem Cell Res, 2014. 13(1): p. 1-11.
    116. Tanida, I., et al., Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy, 2005. 1(2): p. 84-91.
    117. Tanida, I. and S. Waguri, Measurement of autophagy in cells and tissues. Methods Mol Biol, 2010. 648: p. 193-214.
    118. Li, J., et al., Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer, 2010. 46(10): p. 1900-9.
    119. Sun, W.L., et al., Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy, 2011. 7(9): p. 1035-44.
    120. Singh, S.S., et al., Dual role of autophagy in hallmarks of cancer. Oncogene, 2017.
    121. Takamura, A., et al., Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 2011. 25(8): p. 795-800.
    122. Benkirane, M., et al., Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J, 1997. 16(3): p. 611-24.
    123. Zhong, J., et al., A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. Nat Genet, 1999. 22(2): p. 171-4.
    124. Ding, J., et al., Trbp regulates heart function through microRNA-mediated Sox6 repression. Nat Genet, 2015. 47(7): p. 776-83.
    125. Hoshida, Y., et al., Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med, 2008. 359(19): p. 1995-2004.
    126. Ye, Q.H., et al., Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med, 2003. 9(4): p. 416-23.
    127. Hagiwara, S., et al., Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br J Cancer, 2012. 106(12): p. 1997-2003.
    128. Zhai, B. and X.Y. Sun, Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol, 2013. 5(7): p. 345-52.

    無法下載圖示 校內:2023-04-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE