| 研究生: |
王志傑 Wang, Chih-Chieh |
|---|---|
| 論文名稱: |
Streptopain 核磁共振之研究: C 端及催化圈環對於與抑制劑結合及蛋白酶活性所扮演的角色 NMR Study of Streptopain: The role of the catalytic and C-terminal Loops in its Inhibitor Binding and Protease Activity |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 酵素 、催化 、鏈球菌 、核磁共振 、抑制劑 |
| 外文關鍵詞: | loop, SPE B, NMR, cysteine protease |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Streptopain (又稱為Streptococcal pyrogenic exotoxin B,簡稱 SPE B),它是由具致病力的化膿性鏈球菌 (Streptococcus pyogenes) 所表現出來的一種細胞外毒素。SPE B 是一種 cysteine protease,一開始是以酶原態 42-kDa 的形式被表現出來,緊接著會經由自動催化或經由其他蛋白酶的活化而轉成活化態 28-kDa 的形式。許多文獻已指出 SPE B 是此致病菌的一個重要毒性因子,其在病菌感染過程中會藉由切割宿主蛋白進而促使病菌的散佈、入侵、加重發炎反應並抑制傷口癒合等,也指出 SPE B 之所以對細胞或組織有如此大的傷害完全在於其本身的酵素催化特性。為了瞭解 SPE B 為何會有如此廣泛的受質專一性及往後能設計出針對 SPE B 的藥物,我們利用 NMR 分析其動力學特性並定出其 3D 結構以進一步了解其功能。利用加入不同抑制劑 (general inhibitor) 去模擬 SPE B 的受質,發現 SPE B 在結合上抑制劑後有六個區域有明顯化學位移變化 (chemical shift perturbation),對照到 X-ray 所解出的 42-kDa 酶原態結構後,其中五個區域位於結構上的催化中心,然而最特別的是結構中所沒解出來的 C 端圈環竟然也有很明顯的化學環境變化,因此我們認為C端圈環對於蛋白與受質的結合或催化過程或許扮演了重要的角色。蛋白質的內部運動與其功能息息相關,利用 NMR 分析 SPE B 的動力學發現到 SPE B 整個蛋白內部都是很固定的 (rigid),唯獨 C 端與催化圈環具有高度活動性 (flexible),此外當 SPE B 與抑制劑結合後 C 端及催化圈環活動性會增高,若抑制劑帶有一個負電荷的羧基 (carboxyl group)如E-64、E-64c與IAA,又會更提升此二個圈環活動性。從NMR圖譜分析中發現到 C 端與催化圈環彼此間有相互作用,而這樣的相互作用會因為蛋白結合上抑制劑後而消失。我們也解出了SPE B/E-64 複合蛋白與突變蛋白 C47S 的 28-kDa 活化態結構,比較二者結構發現到此二個圈環在 C47S 中相距較近 (5.2 Å),而在 SPE B/E-64 複合蛋白中相距較遠 (11.7 Å)。從功能性分析中也發現到若將催化圈環旁的 V189 及 C 端圈環上的 G239 進行單點突變將會使 SPE B 的催化活性分別降低達 10 倍與 60 倍之多。綜合以上所述,C 端與催化圈環在酵素催化過程及受質結合與產物釋放中或許扮演了重要的角色。除此之外,G136 loop 與 W212-W214 loop 在木瓜酵素家族中是保留的結構,此二個區域的突變亦會大大降低酵素活性,從動力學結果中發現到此二個 loops 具有很高的 Rex 數值,且在圖譜中發現到 G136 loops 與抑制劑 E-64 有相互作用,將圖譜分析結果利用 docking 的方式模擬出 SPE B/E-64 複合蛋白的結構。此研究不僅更了解 Streptopain 的內部催化過程,特別是催化圈環及 C 端圈環在受質結合及催化過程中所扮演的角色,在針對 Streptopain 的專一性藥物設計上亦提供了重要的訊息。
Streptopain (streptococcal pyrogenic exotoxin B; SPE B) is an extracellular cysteine protease expressed by the pathogenic bacterium Streptococcus pyogenes. SPE B is initially expressed as a 42-kDa zymogen and subsequently converted to a 28-kDa active protease by autocatalysis or proteolysis. Many reports have shown that SPE B is an important virulence factor in streptococcal infection such as the dissemination, colonalization, invasion of bacteria, and inhibition of wound healing. To understand why SPE B has broad substrate specificity and to design the drugs for SPE B, we used NMR spectroscopy to determine the 3D structure and dynamics of the SPE B/inhibitor complex. Comparisons of NMR chemical shift differences between the SPE B/inhibitor complexes and the C47S mutant showed that six regions, including Y15-G18, T45-A51, S135-S141, G188-F197, W212-W214, and A231-A246, were involved in the binding of inhibitors to SPE B. The result suggests that the A231-A246 loop, which is unobserved in the crystal structure, may play important roles in substrate binding and recognition. Dynamics analysis of the SPE B/E-64, SPE B/E-64c, and SPE B/IAA complexes showed that the catalytic (G188-F197) and C-terminal (A231-G240) loops were the most flexible regions with motions on the s/ms and ps/ns timescales. In contrast to the complexes with inhibitors containing carboxylic acid moiety, these loops of the C47S mutant and the SPE B/IAAm complex were less flexible. 3D structures of C47S mutant and SPE B/E-64 complex were determined by NMR spectroscopy. The distances between C-terminal and the catalytic loops of the C47S mutant and the SPE B/E-64 complex were 5.94 and 11.62 Å, respectively. This is consistent with NOE analysis that interactions between residues in H195 and A231, and in V192 and A238 were observed in the C47S mutant. Our mutagenesis study also showed that mutations on V189, the residue of the catalytic loop, and on G239, the residue of the C-terminal loop, caused an 11- to 61-fold decrease in activity, suggesting that they were important for the substrate binding. In this study, we found that not only the catalytic loop but also the C-terminal loop play and an important role in the substrate binding and enzyme catalysis of SPE B. We also found that the S135-S141 and W212-W214 loops, the conserved regions in the papain superfamily, have conformational exchange with high Rex values. Based on 15N/13C-edited and -filtered experiments, the NOE interactions indicated that G136 of the S135-S141 loop interacts with the inhibitor, E-64. The conformation of E-64 will be docked into 3D structure of SPE B with the observed intermolecular NOEs. These finding indicates that the C-terminal and the catalytic loops of SPE B play an important role in its substrate binding, and the results will facilitate rational drug design of SPE B.
Agarwal, P.K., Billeter, S.R., Ravi Rajagopalan, P.T., Benkovic, S.J. & Hammes-Schiffer, S. Network of coupled promoting motions in enzyme catalysis. Proc Natl Acad Sci U S A. 99, 2794–2799 (2002)
Agarwal, P.K. Role of Protein Dynamics in Reaction Rate Enhancement by Enzymes. J. Am. Chem. Soc. 127, 15248 – 15256 (2005)
Agarwal, P.K. Enzymes: An integrated view of structure, dynamics and function. Microb Cell Fact 5, 2-12 (2006)
Agarwal, P.K., Geist, A. & Gorin, A. Protein dynamics and enzymatic catalysis: investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A. Biochemistry 43, 10605–10618 (2004)
Akke, M. NMR methods for characterizing microsecond to millisecond dynamics in recognition and catalysis. Current Opinion in Structural Biology 12, 642-647 (2002)
Anderson, E.T., Winter, L.A., Fernsten, P., Olmsted, S.B. & Matsuka, Y.V. The pro-sequence domain of streptomain directs the fording of the mature enzyme. Archives of biochemistry and biophysics 436, 297-306 (2005)
Arumugam, S., Gao, G., Patton, B.L., Semenchenko, V., Brew, K. & Doren, Steven R.V. Increased backbone mobility in -barrel enhances entropy gain driving binding of N-TIMP-1 to MMP-3. J. Mol. Biol. 327, 719-734 (2003)
Berti, P.J. & Storer, A.C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol. 246, 273-83 (1995)
Bisno A.L. Alternate complement pathway activation by group A streptococci: role of M-protein. Infect Immun 26, 1172-1176 (1979)
Bisno, A.L &Collins, C.M. Molecular basis of group A streptococcal virulence. The Lancet Infectious Diseases 3, 191-200 (2003)
Bosco, D.A., Eisenmesser, E.Z., Pochapsky, S., Sundquist, W.I. & Kern, D. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc Natl Acad Sci U S A 99, 5247–5252 (2002)
Brunger, A.T. X-plor Version 3.1: A system for X-ray crystallography and NMR. New Haven, CT: Yale University Press (1992)
Byeon, I.J., Li, H., Song, H., Gronenborn, A.M. & Tsai, M.D. Sequential phosphorylation and multisite interaction characterize specific target recognition by the FHA domain of Ki67. Nature structural & molecular biology 12, 987-993 (2005)
Carapetis, J.R., Steer, A.C., Mulholland, E.K. & Webber, M. The global burden of group A streptococcal diseases. The Lancet Infectious Diseases 5, 685-694 (2005)
Chappell, L.H. & Wastling, J.M. Cyclosporine A - Antiparasite Drug, Modulator of the Host-Parasite Relationship and Immunosuppressant. Parasitology 105, S25–S40 (1992)
Chen, C.Y., Luo, S.C., Kuo, C.F., Lin., Y.S., Wu, J.J., Lin, M.T., Liu, C.C., Jeng, W.Y. & Chuang, W.J. Maturation processing and characterization of streptopain. The journal of biological chemistry 278, 17336-17343 (2003)
Cleray, P.P. Streptococcus moves inward. Nature Medicine 12, 384-386 (2006)
Collin, M. & Olsén, A. Effect of SpeB and EndoS from Streptococcus pyogenes on Human Immunoglobulins. Infection and Immunity 69, 7187-7189 (2001)
Courtney, H.S., Hasty, D.L. & Dale, J.B. Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci, Ann Med 34, 77–87 (2002)
Cunningham, M.W. Pathogenesis of group A streptococcal infections, Clin Microbiol Rev 13, 470–511 (2000)
Dale, J.B., Washburn, R.G., Marques, M.B. & Wessels, M.R. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect immune 64, 1495-1501 (1996)
Doran, J.D., Nomizu, M., Takebe, S., Menard, R,, Griffith, D. & Ziomek, E. Autocatalytic processing of the streptococcal cysteine protease zymogen: processing mechanism and characterization of the autoproteolytic cleavage sites. Eur J Biochem. 263,145-51 (1999)
Eisenmesser, E.Z., Bosco, D.a., Akke, M. & Kern, D. Enzyme dynamics during catalysis. Science 295, 1520-1523 (2002)
Eisenmesser, E.Z., Millet, O., Labeikovsky, W., Korzhnev, D.M., Wolf-Watz, M., Bosco, D.A., Skalicky, J.J., Kay, L.E. & Kern, D. Intrinsic dynamics of an enzyme underlies catalysis. Nature 438,117–121 (2005)
Eriksson, A. & Norgren, M. The superantigenic activity of streptococcal pyrogenic exotoxin B is independent of the protease activity. FEMS Immunol Med Microbiol 25, 355–63 (1999)
Facalam, R.F., Martin, D.R., Lovgren, M., Johnson, D.R., Efstratiou, A., Thompson, T.A., Terry, A., Gowan, S., Kriz, P., Tyrrell, G.J., Kaplan, E. & Beall, B. Extension of the Lancefield classification for group A streptococci by addition of 22 new M protein gene sequence types from clinical isolates: emm103 to emm124, Clin Infect Dis 34, 28–38 (2002)
Federle, M.J., McIver, K.S. & Scott, J.R. A response regulator that represses transcription of several virulence operons in the group A streptococcus, J Bacteriol 181, 3649–3657 (1999)
Feher, V.A & Cavanagh, J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 400, 289-293 (1999).
Fischer, E. Ber Dtsch Chem Ges. p. 3189 (1894)
Freedberg, D.I., Ishima, R., Jacob, J., Wang, Y.X., Kustanovich, I., Louis, J.M. & Torchia, D.A. Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations. Protein Sci. 11, 221-32 (2002)
Froloff, N., Windemuth, A. & Honig, B. On the calculation of binding free energies using continuum methods: Application to MHC class I protein-peptide interactions. Protein Science 6, 1293-1301 (1997)
Gour-Salin, B.J., Lachance, P., Magny, M.C., Plouffe, C., Ménard, R. & Storer, A.C. E64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane] analogues as inhibitors of cysteine proteinases: investigation of S2 subsite interactions. Biochem. J. 299, 389-392 (1994)
Grunberg, R., Nilges, M. & Leckner, J. Flexibility and conformational entropy in protein-protein binding. Structure 14, 683-693 (2006)
Gubba, S., Cipriano, V. & Musser, J.M. Replacement of Histidine 340 with Alanine Inactivates the Group A Streptococcus Extracellular Cysteine Protease Virulence Factor. Infect. Immun. 68, 3716–3719 (2000)
Haldane, JBS. Enzymes. London, Longmans, Green; (1930)
Heath, A., DiRita, V.J., Barg, N.L. & Engleberg, N.C. A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect Immun. 67, 5298-305 (1999)
Herwald, H., Collin, M., Muller-Esterl, W. & Bjorck, L. Streptococcal cysteine proteinase releases kinins: a novel virulence mechanism, J Exp Med 184, 665–673 (1996)
Horstmann R.D., Sievertsen H.J., Knobloch, J. & Fischetti, V.A. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc Natl Acad Sci USA 85, 1657-1661 (1988)
Hsueh, P.R., Wu, J.J., Tsai, P.J., Liu, J.W., Chuang, Y.C. & Luh, K.T. Invasive group A streptococcal disease in Taiwan is not associated with the presence of streptococcal pyrogenic exotoxin genes. Clin. Infect. Dis. 26, 584–589 (1998)
Ishima, R., Torchia, D.A. Protein dynamics from NMR. Nature structural biology 7, 740-473 (2000).
Johnson, D.R., Stevens, D.L. & Kaplan, E.L. Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever, or uncomplicated pharyngitis, J Infect Dis 166, 374–382 (1992)
Kay, L.E. Protein dynamics from NMR. Nature structural biology. 513-517 (1998)
Kagawa, T.F., Cooney, J.C., Baker, H.M., McSweeney, S., Liu, M., Gubba, S., Musser, J.M. & Baker, E.N. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: An integrin-binding cysteine protease. Proc. Nati. Acad. Sci. USA 97, 2235-2240 (2000)
Kagawa, T.F., O’Toole, P.W. & Cooney, J. SPE B-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Molecular Microbiology 57, 650-656 (2005)
Kapur, V., Topouzis, S., Majeasky, M.W., Li, L.L., Hamrick, M. R., Hamill, R.J., Patti, J.M. & Musser, J.M. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15, 327-346 (1993)
Kapur, V., Majesky, M.W., Li, L.L., Black, R.A. & Musser, J.M. Cleavage of interleukin 1beta (IL-1beta) precursor to produce active IL-1beta by a conserved extracellular cysteine protease from Streptococcus pyogenes, Proc Natl Acad Sci USA 90, 7676–7680 (1993)
Kapur, V., Topouzis, S., Majesky, M.W., Li, L.L.,Hamrick M.R., Hamill R.J. et al., Aconserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog 15, 327-346 (1993)
Katoh, E., Louis, J.M., Yamazaki, T., Gronenborn, A.M., Torchia, D.A. & Ishima, R. A solution NMR study of the binding kinetics and the internal dynamics of an HIV-1 protease-substrate complex. Protein Sci 12, 1376 – 1385 (2003)
Kern, D., Eisenmesser, E.Z. & Wolf-Watz, M. Enzyme dynamics during catalysis measured by NMR spectroscopy. Methods in Enzymology 394, 507-524 (2005)
Kreikemeyer, B., McIver, K.S. & Podbielski, A. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends in Microbiology 11, 224-232 (2003)
Levin, J.C. & Wessels, M.R. Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A Streptococcus, Mol Microbiol 30, 209–219 (1998)
Luo, S.C., Chen, C.Y., Lin, Y,S., Jeng, W.Y. & Chuang, W.J. Backbone (1)H, (15)N and (13)C resonance assignments of the 28 kDa mature form of streptopain. J Biomol NMR. 25, 165-166 (2003)
Madden, J.C., Ruiz, N. & Caparon, M. Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in gram-positive bacteria, Cell 104, 143–152 (2001)
Mandel, A.M., Akke, M. & Palmer, A.G III. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol. 246, 144-63 (1995)
Marrack, P. & Kappler, J. The staphylococcal enterotoxins and their relatives, Science 248, 705–711 (1990)
Martin, J.R., Mulder, F.A., Karimi-Nejad, Y., van der Zwan, J., Mariani, M., Schipper, D. & Boelens, R. The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substrate-binding site. Structure 5, 521-532 (1997)
McElheny, D., Schnell, J.R., Lansing, J.C., Jane Dyson, H., & Wright, P.E. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis. Proc Natl Acad Sci U S A. 102, 6807–6812 (2005)
Mittermaier, A and Kay, L.E. New tools provide new insights in NMR studies of protein dynamics. Science 312, 224-228 (2006)
Mitton-Fry, R.M., Anderson, E.M., Hughes, T.R., Lundblad, V. & Wuttke, D.S. Conserved structure for single-stranded telomeric DNA recognition. Science 296, 145-147 (2002).
Mora, M., Bensi, G., Capo, S., Falugi, F., Zingaretti, C., Manetti, A.G., Maggi, T., Taddei, A.R., Grandi, G. & Telford, J.L. Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci U S A. 102, 15641-15646 (2005)
Mulder, F.A., Schipper, D., Bott, R. & Boelens, R. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. J Mol Biol. 292, 111-123 (1999)
Musser, J.M., Hauser, A.R., Kim, M.H., Schlievert, P.M., Nelson, K. & Selander, R.K. Streptococcus pyogenes Causing Toxic-Shock-Like Syndrome and Other Invasive Diseases: Clonal Diversity and Pyrogenic Exotoxin Expression. Proc. Nati. Acad. Sci. USA 88, 2668-2672 (1991)
Musser, J.M., Stockbauer, K., Kapur, V. & Rudgers, G.W. Substitution of cysteine 192 in a highly conserved Streptococcus pyogenes extracellular cysteine protease (interleukin-1b convertase) alters proteolytic activity and ablates zymogen processing. Infect. Immun. 64, 1913–1917 (1996)
Nagamune, H., Ohkura, K. & Ohkuni, H. Molecular basis of group A streptococcal pyrogenic exotoxin B. J Infect Chemother 11, 1-8 (2005)
Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, H., Nara, A., Funao, J., Nakata, M., Tsuda, K., Hamada, S. & Yoshimori, T. Autophagy Defends Cells Against Invading Group A Streptococcus. Science 306, 1037-1040 (2004)
Nicholson, L.K., Yamazaki, T., Torchia, D.A., Grzesiek, S., Bax, A., Kaufman, J.D., Stahl, S.J., Wingfield, P.T., Lam, P.Y.S., Jadhav, P.K., et al. Flexibility and function in HIV-1 protease. Nat. Struct. Biol. 2, 274–280 (1995)
Nomizu, M., Pietrzynski, G., Kato, T., Lachance, P., Menard, R. & Ziomek, E. Substrate specificity of the streptococcal cysteine protease. J Biol Chem. 276, 44551-44556 (2001)
Osborne, M.J., Schnell, J., Benkovic, S.J., Dyson, H.J. & Wright, P.E. Backbone dynamics in dihydrofolate reductase complexes: Role of loop flexibility in the catalytic mechanism. Biochemistry 40, 9846–9859 (2001)
Ohkuni, H., Todome, Y., Watanabe, Y., Ishikawa, T., Takahashi, H., Kannari, Y., et al. Studies of recombinant streptococcal pyrogenic exotoxin B/cysteine protease (rSPE B/SCP) in the skin of guinea gigs and the release of histamine from cultured mast cells and basophilic leukocytes. I J Med Res. 119 Suppl: 33–6 (2004)
Otlewski, J., Jelen, F., Zakrzewska, M. & Olesky, A. The many faces of protease-protein inhibitor interaction. The EMBO journal 24, 1303-1310 (2005)
Papageorgiou, A.C. & Acharya, K.R. Microbial superantigens: from structure to function, Trends Microbiol 8, 369–375 (2000)
Parthasarathy, S. & Murthy, M.R.N. Protein thermal stability: insights from atomic displacement parameters (B values). Protein Engineering 13, 9-13 (2000)
Perez-Casal, J., Caparon, M.G. & Scott, J.R. Mry, a transacting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems, J Bacteriol 173, 2617–2624 (1991)
Pinkney, M., Kapur, V., Smith, J., Weller, U., Palmer, M., Glanville, M., Messner, M., Musser, J.M., Bhakdi, S. & Kehoe, M.A. Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli expressing recombinant toxin: cleavage by streptococcal cysteine protease. Infect Immun. 63, 2776-9 (1995)
Radzicka, A. & Wolfenden, R. A Proficient Enzyme. Science 267, 90-93 (1995)
Rasmussen, M & Björck, L. Proteolysis and its regulation at the surface of Streptococcus pyogenes. Molecular Microbiology 43, 537-544 (2002)
Rawlings, N.D. & Barrett, A.J. Families of cysteine peptidases. Methods Enzymol. 244, 461-86 (1994)
Remerowski, M.L., Pepermans, H.A., Hilbers, C.W. & Van De Ven, F.J. Backbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxation measurements. Eur J Biochem. 235, 629-40 (1996)
Rod, T.H., Radkiewicz, J.L. & Brooks, C.L. Correlated motion and the effect of distal mutations in dihydrofolate reductase. Proc Natl Acad Sci USA 100, 6980–6985 (1993)
Rzychon, M., Chmiel, D. & Stec-Niemczyk, J. Modes of inhibition of cysteine proteases. Acta Biochimica Polonica 51, 861-873 (2004)
Sawaya, M.R., Kraut, J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: Crystallographic evidence. Biochemistry 36, 586–603 (1997)
Schmidtchen, A., Frick, L.M. & Bjorck, I. Dermatan sulphate is released by proteinase of common pathogenic bacteria and inactivates antibacterial α-defensin. Mol Microbiol 39,708–13 (2001)
Schmidtchen, A., Frick, I., Anderson, E., Tapper, H. & Bjorck, I. Proteinases
of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46, 157–68 (2002)
Schwede, T., Kopp J., Guex, N. & Peitsch, M.C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research 31, 3381-3385 (2003)
Shanley, T.P., Schrier, D., Kapur, V., Kehoe, M., Musser, J.M. & Ward, P.A. Streptococcal cysteine protease augments lung injury induced by products of group A streptococci. Infect Immun. 64,870-877 (1996)
Stevens, D.L. Invasive group A streptococcal disease. Infect Agents Dis. 5,157-66 (1996)
Stevens, D.L. Streptococcal toxic shock syndrome associated necrotizing fasciitis. Annual Review Medicine 51, 271-288 (2000)
Stone, M.J. NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Acc. Chem. Res. 34, 379-388 (2001)
Stollerman, G.H. Changing group A streptococci. The reappearance of streptococcal 'toxic shock'. Arch. Intern. Med. 148, 1268-1270 (1988)
Tai, J.Y., Kortt, A.A., Liu, T.Y. & Elliott, S.D. Primary structure of streptococcal proteinase. III. Isolation of cyanogen bromide peptides: complete covalent structure of the polypeptide chain. J. Biol. Chem. 251, 1955-1959 (1976)
Tousignant, A. & Pelletier, J.N. Protein motions promote catalysis. Chem Biol. 11, 1037-42 (2004)
Tsai, P.J., Kuo, C.H., Lin, K.Y., Lin, Y.S., Lei, H.Y., Chen, F.F., Wang, J.R. & Wu, J.J. Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect. Immun 66, 1460-1466 (1998)
Tsai, W.H., Chang, C.W., Chuang, W.J., Lin, Y.S., Wu, J.J., Liu, C.C., Chang, W.T. & Lin, M.T. Streptococcal pyrogenic exotoxin B-induced apoptosis in a549 cells is mediated by a receptor- and mitochondrion-dependent pathway. Infect Immun. 72, 7055-62 (2004)
Tsao, N., Tsai, W.H., Lin, Y.S., Chuang, W.J., Wang, C.H. & Kuo, C.F. Streptococcal pyrogenic exotoxin B cleaves properdin and inhibits complement-mediated opsonophagocytosis. Biochem Biophys Res Commun 339, 779-84 (2006)
Turk, D & Dušan, G. Lysosomal cysteine protease (cathepsins): promising drug targets. Acta Crystallographica Section D 59, 203-213 (2003)
Voyich, J.M., Musser, J.M. & Deleo, F.R. Streptococcus pyogenes and human neutrophils: a paradigm for evasion of innate host defense by bacterial pathogens. Microbes and Infection 6, 1117–1123 (2004)
Watanabe, Y., Todome, Y. & Ohkuni, H. et al., Cysteine protease activity and histamine release from the human mast cell line HMC-1 stimulated by recombinant streptococcal pyrogenic exotoxin B/streptococcal cysteine protease, Infect Immun 70, 3944–3947 (2002)
Wexler, D.E., Chenoweth, D.E. & Cleary, P.P. Mechanism of action of the group A streptococcal C5a inactivator, Proc Natl Acad Sci USA 82, 8144–8148 (1985)
Wong, K.F., Selzer, T., Benkovic, S.J. & Hammes-Schiffer, S. Chemical Theory and Computation Special Feature: Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. Proc Natl Acad Sci USA 102, 6807-6812 (2005)
Yinduo, J., McLandsborough, L., Kondagunta, A. & Cleary, P.P. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect Immun 64, 503–510 (1996)
ídek, L., Stone, M.J., Lato, S.M., Pagel, M.D., Miao, Z., Ellington, A.D. & Novotny, M.V. NMR Mapping of the Recombinant Mouse Major Urinary Protein I Binding Site Occupied by the Pheromone 2-sec-Butyl-4,5-dihydrothiazole. Biochemistry 38, 9850-9861 (1999)
ídek, L., Novotny, M. & Stone, M.J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol 6, 1118-1121 (1999)
陳秋月 化膿性鏈球菌外毒素 B 的表現和特性之研究。國立成功大學生物化學研究所碩士論文 (1999)
羅世奇 活化態熱原性鏈球菌外毒素 B (SPE B) 的製備與結構測定。 國立成功大學生物化學研究所碩士論文 (2002)
黃湘琦 熱原性鏈球菌外毒素 B 與其突變株 C47S 的結構與功能關係之探討。 國立成功大學生物化學研究所碩士論文 (2004)。
王佩如 熱原性鏈球菌外毒素 B 多型性及突變株的特性之研究。 國立成功大學生物化學研究所碩士論文 (2005)
謝堯勳 探討去組合蛋白之 RGD 區間及 C 端區域在辨識組合蛋白 v3和 51的角色。國立成功大學生物化學研究所碩士論文 (2006)