| 研究生: |
葉哲瑜 Yeh, Che-Yu |
|---|---|
| 論文名稱: |
聲化學合成鎵基次微米粒子及其在銅對銅接合之應用 Sonochemical synthesis of Ga-based sub-micron particles and the application for Cu-to-Cu interconnection |
| 指導教授: |
林士剛
Lin, Shih-Kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 三維度積體電路構裝 、銅對銅接合 、聲化學合成 、鎵基粒子 |
| 外文關鍵詞: | 3D IC, Cu-to-Cu bonding, Sonochemistry, Ga-based particles |
| 相關次數: | 點閱:148 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今半導體相關產業的發展當中,三維度積體電路構裝之矽穿孔技術以及高功率寬能隙半導體構裝中之固晶技術是電子構裝領域中最具關注的技術,而其方式是利用垂直堆疊之方式將元件整合,此方法能有效縮小系統之體積、加速訊號傳遞的時間並且提升整體之效能以因應現今產品輕、薄、短、小之趨勢,而當中矽穿孔技術是將元件垂直堆疊整合之關鍵技術,而由於銅具有高導電率、高機械強度以及低成本之性,銅為現今做為填充矽穿孔之主要材料,因此,銅對銅之接合成了電子構裝技術中最關鍵的一環。
銅對銅接合技術中,常用之方法為微凸塊接合、粒子燒結以及熱壓接合等,微凸塊接合為一相對成熟之製程,不僅快速且成本低,但在接點處會形成脆性之介金屬化合物,並且隨著接點逐漸縮小,介金屬化合物幾乎遍佈整個接點,對於接點之可靠度以及電性有極大之影響。粒子燒結常用之材料為銀,雖然能在低溫、低壓、短時間形成高強度之接點,並且具有低電阻、高熱傳導率以及高熔點的特性,使其能應用於高溫、高頻操作下高功率元件中,但其因為具有高孔隙率、低抗遷移能力以及高成本而成了其缺點。而熱壓接合能形成高強度之接合結構,但其需要高溫、長時間的接合條件,並且對於銅基材的平坦度有一定的要求,造成製程上耗時且高成本。因此,在現今的銅對銅接合技術中,需要構想出一個能在低溫、低壓、短時間的條件下能達到高可靠度、高熱穩定性以及低電阻之接合技術,並且能解決介金屬化合物在界面處生成之議題,以因應現今產業發展以及應用。
在此研究中,利用固溶型暫態液相接合法以鎵作為接合材料並搭配鎳凸塊下金屬層,形成一高可靠度的銅對銅接合。而由於鎵具有以下特性: (1)在銅與鎳中具有高溶解度、(2)低熔點 (29.8 ℃)、(3)於銅中具有高擴散速率;而選擇使用鎳凸塊下金屬層的原因為: (1)改善銅和鎵之間的濕潤性已避免不均勻反應、(2)銅與鎳的完全固溶特性。而此研究利用聲化學合成法合成鎵基粒子,並將其製備成漿料以改善製程轉移上之困難,利用Cu/Ni/Ga paste/Ni/Cu之熱壓接合結構進行銅對銅接合,於300 oC、10 MPa、不同反應時間之條件下皆能形成Cu/fcc-(Ni, Cu, Ga)/Cu的良好固溶性接合,並且此接合結構具有良好之機械性質、電性以及熱穩定性之表現。同時也透過界面反應的方式探討之固溶性接合結構之生成機制,發現在接合接面處在起始時會優先生成多孔柱狀結構之Ni3Ga7相,隨著接合時間增加,此結構會逐漸緻密並且逐漸消耗轉變為Ni2Ga3相,而後基材之銅會逐漸往界面處擴散,Ga往基材處擴散,使Cu-Ni-Ga產生三元交互作用而使接合界面逐漸轉變為固溶性之結構。因此,利用此技術能夠形成高可靠度、高熱穩定性之之固溶性銅對銅接合,解決介金屬化合物生成之問題,成功應用至3D IC以及寬能隙半導體之電子構裝當中。
With the miniaturization of electronic devices, importance for developing of electronic packaging technologies grows significantly on a daily broadening scale. Conventional packaging technologies gradually unable to meet the requirements of 3D IC or high power devices operated at extremely harsh environment. In this study, solid-solution type of TLP bonding is used with Ga pastes as filler material and Ni as UBM to form high reliability Cu-to-Cu interconnection. Ga is chosen as filler material since its low melting point (29.8 oC), high solubility in Cu and Ni, and high diffusion mobility in Cu. Ni is chosen as UBM since it can improve poor wettability between Cu and Ga, and also the isomorphous property between Cu substrate and Ni UBM. In this research, Ga-based particles are synthesized by sonochemical process and deployed into pastes to improve transfer issue. Cu/fcc-(Ni, Cu, Ga)/Cu solid-solution bonding joints can be fabricated with Cu/Ni/Ga paste/Ni/Cu structure at 300 oC and 10 MPa bonding condition for different reaction time. This bonding structure has high mechanical properties, thermal stability and high electrical performance. The mechanism of forming solid-solution bonding joints is studied by interfacial reaction. Initially, Ni3Ga7 phase form at the interface with porous and columnar structure. With prolong reaction time, Ni3Ga7 phase will be consumed and then turn into Ni2Ga3 phase. Cu diffuse toward bonding interface to perform Cu-Ni-Ga ternary interaction to increase the solubility, which makes Ni2Ga3 phase turn into fcc solid-solution phase gradually with the supersaturation of Cu. Therefore, with this process, high reliability, high thermal stability Cu-to-Cu interconnection can be achieved.
1. 2015展望:技術趨勢和驅動力. 半導體科技 2015.
2. TSMC. More-than-Moore technologies provide additional values.
3. Développement, Y., Power SiC 2016: Materials, Devices, Modules, and Applications. 2016.
4. Lambert, F., Toyota is planning long-range battery-powered electric cars for 2020 as its hydrogen fuel cells cars are failing. 2016.
5. Cheng, H., K. Chiang, and M. Lee, ‘An Alternative Local/Global Finite Element Approach for Ball Grid Array Typed Packages. ASME Journal of Electronic Packaging, 1998. 120: p. 129-134.
6. Chiang, K.-N. and W.-L. Chen, Electronic packaging reflow shape prediction for the solder mask defined ball grid array. Transactions-American Society of Mechanical Engineers Journal of Electronic Packaging, 1998. 120: p. 175-178.
7. Chiang, K.-N. and W.-L. Chen, Electronic packaging reflow shape prediction for the solder mask defined ball grid array. Journal of Electronic Packaging, 1998. 120(2): p. 175-178.
8. Lau, J.H., Overview and outlook of through-silicon via (TSV) and 3D integrations. Microelectronics International, 2011. 28(2): p. 8-22.
9. Iacopi, F., et al., Power electronics with wide bandgap materials: Toward greener, more efficient technologies. MRS Bulletin, 2015. 40(05): p. 390-395.
10. Agarwal, R., et al. High density Cu-Sn TLP bonding for 3D integration. in Electronic Components and Technology Conference, 2009. ECTC 2009. 59th. 2009.
11. Lu, J.-Q., 3-D hyperintegration and packaging technologies for micro-nano systems. Proceedings of the IEEE, 2009. 97(1): p. 18-30.
12. Wang, B.K., et al. Thin glass substrates development and integration for through glass vias (TGV) with copper (Cu) interconnects. in 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2012. IEEE.
13. Kong, L., et al., 3D-interconnect: Visualization of extrusion and voids induced in copper-filled through-silicon vias (TSVs) at various temperatures using X-ray microscopy. Microelectronic Engineering, 2012. 92: p. 24-28.
14. Shorey, A.B. and R. Lu. Progress and application of through glass via (TGV) technology. in 2016 Pan Pacific Microelectronics Symposium (Pan Pacific). 2016. IEEE.
15. Mimatsu, H., et al., Simultaneous fabrication of a through-glass interconnect via and a bump using dry film resist and submicron gold particles. IET Micro & Nano Letters, 2014. 9(8): p. 532-535.
16. HAMAGUCHI, T., SiC功率元件之優點強化電源轉換系統之效能. 半導體科技 2014.
17. Davis, R.F., et al., Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proceedings of the IEEE, 1991. 79(5): p. 677-701.
18. YOLE DEVELOPPEMENT REPORT. 2012.
19. Johnson, R.W., et al., Power device packaging technologies for extreme environments. Electronics Packaging Manufacturing, IEEE Transactions on, 2007. 30(3): p. 182-193.
20. Bae, H.-C., et al., Fine-Pitch Solder on Pad Process for Microbump Interconnection. ETRI Journal, 2013. 35(6): p. 1152-1155.
21. Tu, K.N., H.-Y. Hsiao, and C. Chen, Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy. Microelectronics Reliability, 2013. 53(1): p. 2-6.
22. Seung Wook, Y., et al. Fabrication and packaging of microbump interconnections for 3D TSV. in 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on. 2009.
23. Tsai, J.Y., et al., A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni. Journal of Electronic Materials, 2003. 32(11): p. 1203-1208.
24. Anderson, I.E., Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications. Journal of Materials Science: Materials in Electronics, 2007. 18(1): p. 55-76.
25. Wu, C.M.L., et al., Properties of lead-free solder alloys with rare earth element additions. Materials Science and Engineering: R: Reports, 2004. 44(1): p. 1-44.
26. Song, J.-M., C.-F. Huang, and H.-Y. Chuang, Microstructural characteristics and vibration fracture properties of Sn-Ag-Cu-TM (TM=Co, Ni, and Zn) alloys. Journal of Electronic Materials, 2006. 35(12): p. 2154-2163.
27. Ho, C.E., et al., Formation and resettlement of (AuxNi1−x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish. Journal of Electronic Materials, 2000. 29(10): p. 1175-1181.
28. Tu, K.N., et al., Wetting reaction versus solid state aging of eutectic SnPb on Cu. Journal of Applied Physics, 2001. 89(9): p. 4843-4849.
29. Zeng, K. and K.N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Materials Science & Engineering R-Reports, 2002. 38(2): p. 55-105.
30. Chen, S.W., C.-M. Chen, and W.C. Liu, Electron Materials, 1998. 27: p. 1193.
31. Guo-Quan, L., et al. A lead-free, low-temperature sintering die-attach technique for high-performance and high-temperature packaging. in High Density Microsystem Design and Packaging and Component Failure Analysis, 2004. HDP '04. Proceeding of the Sixth IEEE CPMT Conference on. 2004.
32. Akada, Y., et al., Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior. Materials transactions, 2008. 49(7): p. 1537-1545.
33. Jiu, J., et al., Simultaneous synthesis of nano and micro-Ag particles and their application as a die-attachment material. Journal of Materials Science: Materials in Electronics, 2015. 26(9): p. 7183-7191.
34. Zhang, H., S. Nagao, and K. Suganuma, Addition of SiC Particles to Ag Die-Attach Paste to Improve High-Temperature Stability; Grain Growth Kinetics of Sintered Porous Ag. Journal of Electronic Materials, 2015. 44(10): p. 3896-3903.
35. Soichi, S. and K. Suganuma, Low-Temperature and Low-Pressure Die Bonding Using Thin Ag-Flake and Ag-Particle Pastes for Power Devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013. 3(6): p. 923-929.
36. Morita, T., et al., Bonding technique using micro-scaled silver-oxide particles for in-situ formation of silver nanoparticles. Materials transactions, 2008. 49(12): p. 2875-2880.
37. Zhang, H., et al., In situ bridging effect of Ag 2 O on pressureless and low-temperature sintering of micron-scale silver paste. Journal of Alloys and Compounds, 2017. 696: p. 123-129.
38. Riva, R., et al., Migration issues in sintered-silver die attaches operating at high temperature. Microelectronics Reliability, 2013. 53(9): p. 1592-1596.
39. Ko, C.T. and K.N. Chen, Wafer-level bonding/stacking technology for 3D integration. Microelectronics Reliability, 2010. 50(4): p. 481-488.
40. Sakai, T., N. Imaizumi, and S. Sakuyama. A low temperature Cu-Cu direct bonding method with VUV and HCOOH treatment for 3D integration. in Electronics Packaging and iMAPS All Asia Conference (ICEP-IACC), 2015 International Conference on. 2015. IEEE.
41. Liu, C.M., et al., Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific Reports, 2015. 5.
42. Oh, C., et al., Pressureless wafer bonding by turning hillocks into abnormal grain growths in Ag films. Applied Physics Letters, 2014. 104(16): p. 161603.
43. Bianca, B., et al., Fabrication and characterization of reactive nanoscale multilayer systems for low-temperature bonding in microsystem technology. Journal of Micromechanics and Microengineering, 2010. 20(6): p. 064018.
44. Boettge, B., et al. Packaging material issues in high temperature power electronics. in Microelectronics Packaging Conference (EMPC) , 2013 European. 2013.
45. Gale, W.F. and D.A. Butts, Transient liquid phase bonding. Science and Technology of Welding and Joining, 2004. 9(4): p. 283-300.
46. Cook, G.O. and C.D. Sorensen, Overview of transient liquid phase and partial transient liquid phase bonding. Journal of Materials Science, 2011. 46(16): p. 5305-5323.
47. Li, J.F., P.A. Agyakwa, and C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Materialia, 2011. 59(3): p. 1198-1211.
48. Yang, T., et al., Full intermetallic joints for chip stacking by using thermal gradient bonding. Acta Materialia, 2016. 113: p. 90-97.
49. Buhler, T., et al., A thermodynamic assessment of the Al-Cu-Mg ternary system. Journal of Phase Equilibria, 1998. 19(4): p. 317-333.
50. Lin, S.-k., C.-l. Cho, and H.-m. Chang, Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples. Journal of Electronic Materials, 2014. 43(1): p. 204-211.
51. 卓政樑, 銅/鎵界面反應及其在三維度積體電路的應用. 成功大學材料科學及工程學系學位論文, 2013: p. 1-76.
52. Lin, S.-k., et al., Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits. Electronic Materials Letters, 2015. 11(4): p. 687-694.
53. Lin, S.-k., et al., High-strength and thermal stable Cu-to-Cu joint fabricated with transient molten Ga and Ni under-bump-metallurgy. Journal of Alloys and Compounds, 2017. 702: p. 561-567.
54. Suslick, K.S., Sonochemistry. science, 1990. 247(4949): p. 1439-1446.
55. Gedanken, A., Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry, 2004. 11(2): p. 47-55.
56. Raabe, D. and D. Hessling, Synthesis of hollow metallic particles via ultrasonic treatment of a metal emulsion. Scripta Materialia, 2010. 62(9): p. 690-692.
57. Suslick, K.S., D.A. Hammerton, and R.E. Cline, Sonochemical hot spot. Journal of the American Chemical Society, 1986. 108(18): p. 5641-5642.
58. Zhu, J., et al., Shape-Controlled Synthesis of Silver Nanoparticles by Pulse Sonoelectrochemical Methods. Langmuir, 2000. 16(16): p. 6396-6399.
59. Kumar, V.B., et al., Ultrasonic cavitation of molten gallium: Formation of micro- and nano-spheres. Ultrasonics Sonochemistry, 2014. 21(3): p. 1166-1173.
60. Kumar, V.B., et al., Chiral imprinting in molten gallium. New Journal of Chemistry, 2015. 39(4): p. 2690-2696.
61. Kumar, V.B., A. Gedanken, and Z.e. Porat, Facile synthesis of gallium oxide hydroxide by ultrasonic irradiation of molten gallium in water. Ultrasonics Sonochemistry, 2015. 26: p. 340-344.
62. Yamaguchi, A., Y. Mashima, and T. Iyoda, Reversible Size Control of Liquid-Metal Nanoparticles under Ultrasonication. Angewandte Chemie International Edition, 2015. 54(43): p. 12809-12813.
63. Kumar, V.B., Z.e. Porat, and A. Gedanken, DSC measurements of the thermal properties of gallium particles in the micron and sub-micron sizes, obtained by sonication of molten gallium. Journal of Thermal Analysis and Calorimetry, 2015. 119(3): p. 1587-1592.
64. Friedman, H., et al., Micro- and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation. Ultrasonics Sonochemistry, 2013. 20(1): p. 432-444.
65. Friedman, H., et al., Formation of metal microspheres by ultrasonic cavitation. Journal of Materials Research, 2010. 25(04): p. 633-636.
66. Mizukoshi, Y., et al., Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. The Journal of Physical Chemistry B, 1997. 101(36): p. 7033-7037.
67. Dhas, N.A., A. Zaban, and A. Gedanken, Surface synthesis of zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties. Chemistry of materials, 1999. 11(3): p. 806-813.
68. Kumar, V.B., et al., Reduction of metallic ions by molten gallium under ultrasonic irradiation and interactions between the formed metals and the gallium. Journal of Alloys and Compounds, 2015. 637: p. 538-544.
69. Boley, J.W., E.L. White, and R.K. Kramer, Mechanically sintered gallium–indium nanoparticles. Advanced Materials, 2015. 27(14): p. 2355-2360.
70. Lin, Y., et al., Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small, 2015. 11(48): p. 6397-6403.
71. Hohman, J.N., et al., Directing Substrate Morphology via Self-Assembly: Ligand-Mediated Scission of Gallium–Indium Microspheres to the Nanoscale. Nano Letters, 2011. 11(12): p. 5104-5110.
72. Zhang, H., S. Nagao, and K. Suganuma, Addition of SiC Particles to Ag Die-Attach Paste to Improve High-Temperature Stability; Grain Growth Kinetics of Sintered Porous Ag. Journal of Electronic Materials, 2015. 44(10): p. 3896.
校內:2022-08-08公開