| 研究生: |
陳虹年 Chen, Hung-Nien |
|---|---|
| 論文名稱: |
砷與腐植酸相關配位基的反應探討/鐵硫化合物的化學及新一代硫磷配位基的開發 Chemistry of Arsenic Reacting with Ligands Relevant to Humic Acid / Chemistry of Iron Thiolate Complexes and Development of New Thiolatophosphine Ligands |
| 指導教授: |
許鏵芬
Hsu, Hua-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 鐵硫化合物 、砷金屬化學 |
| 外文關鍵詞: | Iron-thiolate complexes, Arsenic chemistry |
| 相關次數: | 點閱:112 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文有兩個研究方向:第一部分探討砷和腐植酸及相關小分子的反應化學,第二部分則為鐵硫化物的化學研究以及新一代磷硫配位基的開發。其主要內容如下:
地下水層的砷汙染已經對許多地區居民造成嚴重的健康威脅。就分子化學的觀點對於砷和環境中分子的反應進行探討,對於幫助了解砷中毒的機制是非常有效的。我們已經由文獻中了解腐植物質中,由其以水溶性極高的富里酸(fulvic acid)對於金屬有極好的配位能力,可以視為是環境中金屬離子的過濾器。腐植物質具有許多官能基而有利於和砷形成配位關係,尤其是鄰苯二甲酸、水楊酸等官能基對於金屬皆有極好的配位能力,而其他腐植物質上的官能基如酚、二羥基苯甲酸等官能基亦對砷有良好的鍵結效應。了解砷對於腐植物質上官能基的配位化學關係後更可幫助評估砷和腐植酸的可能反應。因此,我們設計砷和鄰苯二甲酸、水楊酸、二甲基苯、以及二羥機苯甲酸的反應。於本論文中,我們著重於砷和二羥基苯甲酸(DHBA)的反應化學,此類砷和腐植酸的反應化學在文獻上仍未被廣為研究發表。而在我們的研究中,相較於以五價砷進行反應,以三價砷做為起始物和含有腐植酸相關官能基的配位基是較難反應鍵結的。然而,於大氣環境中,三價砷又會氧化成五價的形式和配位基反應,而此類砷和配位基的化合物我們亦藉由光譜分析進行鑑定。
在我第二部分的實驗中則是致力於研究具有固氮酵素功用的鐵硫化合物。而我已經利用鐵起始物和雙硫磷配位基以1:2的方式鍵結,已得到鐵三價以及四價兩種化合物,其合成方式以及結構鑑定皆於論文中呈現。另一方面,我們則對雙硫磷配位基進行改良,希望藉由苯環鍵結上具有醯胺官能基的取代基,可以藉由產生氫鍵而穩定鍵結於金屬上的小分子。
This work includes two subjects: i) chemistry of arsenic interacting with humic acid and relevant small molecules, and ii) chemistry of iron thiolate complexes and developing new generation of thiolatophosphine ligands. We summary in the followings:
Drinking water polluted by arsenic has caused sever health risk in many areas. To elucidate toxicity effect of arsenic in molecular basis, it is essential to understand fundamental chemistry of arsenic interacting with environmental-related molecules. It has been known that humic material, particularly highly soluble fulvic acid might serve as complexing agents for metal ions leached in the environment. Humic material contains various functional groups that likely coordinate to arsenic. In particular, phthalic acid and salicylic acid moieties are thought to play particularly important roles in metal chelate formation processes. Other functional groups such as phenols and hydroxyacid are also good candidates to bind to arsenic. Understanding coordination chemistry of arsenic with these functional groups might assist to elucidate how arsenic interacting with humic acids. Therefore, we plan to study the reactions of arsenic reacting with phthalic acid, salicylic acid, catechol, dihydroxybenzoic acid. At this research, we focused on the chemistry of arsenic species reacting with dihydroxybenzoic acid (DHBA). The chemistry of arsenic species interacting with humic acid has not been well established in literatures. This work demonstrated that arsenic(III) has less tendency binding with ligands that contain the function groups relevant to humic acid. However, asenic(V) can form complexes with such ligands. Furthermore, As(III) is oxidized to As(V) in the presence of these ligands by exposure to air. In addition, the spectroscopic features of arsenic interacting with humic acid were also established.
The second part of the work was motivated from the finding of nitrogenase that contains an active site of iron-sulfur cluster. The reactions of iron with bis(thiolato)phosphine ligands were explored and led to an iron(IV) and an iron(III) complexes by binding two title ligands. The syntheses and structures were reported here. In addition, we also intended to develop the new generation of bis(benzenethiolato)phosphine ligand by adding amide group in the phenyl ring. It was anticipated that such ligand can bring the second-coordination-sphere effect on metal complexes.
第一部分參考文獻:
1. (a) Tseng, C.-H., Journal of Environmental Science and Health, Part C 2005, 23 (1), 55-74; (b) Tseng, C. H., Angiology 2002, 53, 529-537; (c) Tseng, W. P., Blackfoot disease in Taiwan: A 30-year follow-up study. Angiology 1989, 40, 547-558.
2. Ko, I.; Davis, A. P.; Kim, J.-Y.; Kim, K.-W., Journal of Hazardous Materials 2007, 141, 53-60.
3. Lu, F. J.; Tsai, M. H.; Ling, K. H., J Formosan Med Assoc 1978, 77, 68-76.
4. (a) Yeh, S. J.; Wu, C. T.; Yang, C. Y., Blackfoot Dis Res Rep 1983, 16, 1-21; (b) S. J. Yeh ; Yang, M. H., Blackfoot Dis Res Rep 1980, 8, 22-28.
5. (a) Tseng, C. H.; Chong, C. K.; Chen, C. J.; Tai, T. Y., Atherosclerosis 1996, 20, 125-133; (b) Tseng, C. H.; .Chong, C. K.; Chen, C. J.; Tai, T. Y., Angiology 1997, 48, 321-335.
6. Tseng, W. P.; Chu, H. M.; How, S. W.; Fong, J. M.; Lin, C. S.; Yeh, S., J Natl Cancer Inst 1968, 40, 453-463.
7. Tseng, C. H.,. Toxicol Lett 2003, 146, 27-36.
8. Engel, R. R.; Epidemiol Rev 1994, 16, 184-209.
9. (a) Tseng, C. H.; Chong, C. K.; Tseng, C. P.; Hsueh, Y. M.; Chiou, H. Y.; Tseng, C. C.; Chen, C. J., Toxicol Lett 2003, 137, 15-21; (b) Chen, C. J.; Chiou, H. Y.; Chiang, M. H.; Lin, L. J.; Tai, T. Y., Arterioscler Thromb Vasc Biol 1996, 16, 504-510; (c) Chiou, H. Y.; Huang, W. I.; Su, C. L.; Chang, S. F.; Hsu, Y. H.; Chen, C. J., Stroke 1997, 28, 1717-1723.
10. Hseu, Y.-C.; Chang, W.-C.; Yang, H.-L., The Science of the Total Environment 2001, 273, 93-99.
11. Buschmann, J.; kappeler, A.; Lindauer, U.; Kistler, D.; Berg, M.; Sigg, L., Environ. Sci. Technol. 2006, 40, 6015-6020.
12. Adani, F.; Genevini, P.; Tambone, F.; Montoneri, E., chmoshpere 2006, 65, 1414-1418.
13. Montoneri, E.; Savarino, P.; F. Adani; Genevini, P. L.; Ricca, G.; Zanetti, F.; Paoletti, S., Waste Management 2003, 23, 523-535.
14. Pavia, D. L.; Lampman, G. M.; Kriz, G. S., Introdution to Spectroscopy. 3 ed.; 2001.
15. Yuan, C.-G.; He, B.; Gao, E.-L.; Lu¨, J.-X.; Jiang, G.-B., Microchim Acta 2007, 159, 175-182.
16. Bladh, K. W.; Corbett, R. K.; McLean, W. J.; Laughon, R. B., American Mineralogist 1972, 57, 1880-1884.
17. Zhang, Y.; Zhou, B.; Su, Z.; Zhao, Z.; Li, C., Inorganic Chemistry Communications 2009, 12, 65-68.
18. Ng, S. W., Acta Crystallographica Section E: Structure Reports Online 2007, 63, m997-m998.
第二部分參考文獻:
1. (a) Georgiadis, M. M.; Komiya, H.; Chakrabarti, P.; Woo, D.; Kornuc, J. J.; Rees, D. C., Science 1992, 257, 1653-1659; (b) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C., Science 2002, 297, 1696-1700.
2. (a) Eady, R. R., Chemical Reviews 1996, 96 (7), 3013-3030; (b) Eady, R. R., Coordination Chemistry Reviews 2003, 237, 23-30.
3. Chen, Y.; Zhou, Y.; Chen, P.; Tao, Y.; Li, Y.; Qu, J., Journal of the American Chemical Society 2008, 130, 15250-1251.
4. (a) SELLMANN, D.; SUTTER, J., ACCOUNTS OF CHEMICAL RESEARCH 1997, 30 (11), 460-469; (b) Sellmann, D.; Hennige, A., Angew. Chem. Inf. Ed. Engl. 1997, 36 (3), 276-278.
5. MacKay, B. A.; Fryzuk, M. D., Chemical Reviews 2004, 104 (2), 385-401.
6. Niemoth-Anderson, J. D.; Clark, K. A. F.; George, T. A.; Ross, C. R., Journal of the American Chemical Society 2000, 122, 3977-3978.
7. Metteau, L.; Parsons, S.; Mareque-Rivas, J. C., Inorganic Chemistry 2006, 45, 6601-6603.
8. (a) MacBeth, C. E.; Hammes, B. S.; Victor G. Young, J.; Borovik, A. S., Inorganic Chemistry 2001, 40, 4733-4741; (b) Hammes, B. S.; Victor G. Young, J.; Borovik, A. S., Angew. Chem. Inf. Ed. Engl. 1999, 38 (5), 666-669.
9. (a) Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L., Journal of the American Chemical Society 2005, 127, 7857-7870; (b) Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers, G.; Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L., Journal of the American Chemical Society 2006, 128, 756-769.
10. Pe´rez-Lourido, P.; Romero, J.; Garcı´a-Va´zquez, J. A.; Castro, J. s.; Sousa, A.; Cooper, L.; Dilworth, J. R.; Richards, R. L.; Zheng, Y.; Zubieta, J. A., Inorganica Chimica Acta 2008, 356, 193-202.
11. (a) Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y., Chemical Reviews 2003, 103 (6), 2167-2201; (b) Gastel, M. v.; Lubitz, W.; Lassmann, G. n.; Neese, F., Journal of the American Chemical Society 2004, 126, 2237-2246.
12. Poturovic, S.; Mashut, M. S.; Grapperhaus, C. A., Angew. Chem. Inf. Ed. Engl. 2005, 44, 1883-1887.
13. (a) Thomas, U. K.; Weyhermiiller; Wolter, T.; Wieghardt, K.; Bill, E.; Butzlaff, C.; Trautwein, A. X., Chem. Inf. Ed. Engl. 1993, 32 (11), 1635-1638; (b) Sellmann, D.; Geck, M.; Knoch, F.; Ritter, G.; Dengler, J., Journal of the American Chemical Society 1991, 113, 3819-3828.
14. Kimura, S.; Bill, E.; Bothe, E.; Weyhermu1ller, T.; Wieghardt, K., Journal of the American Chemical Society 2001, 123, 6025-6039.
15. Pavia, D. L.; Lampman, G. M.; Kriz, G. S., Introdution to Spectroscopy. 3 ed.; 2001.
16. Meyer, Y.; Richard, J.-A.; Massonneau, M.; Renard, P.-Y.; Romieu, A., ORGANIC LETTERS 2008, 10 (8), 1517-1520.
17. Li, B.; Wang, Y.; Du, D.-M.; Xu, J., The Journal of Organic Chemistry 2007, 72 (3), 990-997.
18. Yoshida, J.-i.; Nakatani, S.; hoe, S., The Journal of Organic Chemistry 1993, 58, 4855-4865.
19. Silverstein, R. M.; Webster, F. X.; Kiemle, D., Spectrometric Identification of Organic Compounds, 7th Edition. New York, 2005.
20. (a) Du, Z.-T.; Liu, R.; Wang, J.-R.; Li, A.-P., Molecules 2009, 14, 2111-2117; (b) Bakuzis, P.; Bakuzis, M. L. F., The Journal of Organic Chemistry 1981, 46, 235-239; (c) Xu, J.; Su, X.; Zhang, Q., Tetrahedron: Asymmetry 2003, 14, 1781-1786.
21. Garofalo, A.; Campiani, G.; Ciani, S. M.; Fiorini, I.; Nacci, V., Tetrahedron 1996, 52 (22), 7745-7754.