| 研究生: |
陳育聖 Chen, Yu-Sheng |
|---|---|
| 論文名稱: |
中子繞射與渺子自旋弛豫對 Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>於低溫磁場下其磁性結構與自旋動力學之研究 Neutron Diffraction and muSR studies of the field-dependent magnetic structures and spin dynamics in the double pyrochlore Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> |
| 指導教授: |
張烈錚
Chang, Lieh-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 燒綠石氧化物 、中子粉末繞射 、μ子自旋弛豫 、磁結構 |
| 外文關鍵詞: | pyrochlore oxides, neutron powder diffraction, muon spin relaxation, magnetic structure |
| 相關次數: | 點閱:125 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
釹基燒綠石(Nd-pyrochlore)化合物具有磁矩分裂、八極級與自旋手性等新穎的物理現象。在本文中,我們使用中子粉末繞射、μSR技術和室內量測如熱容,磁化率等,對雙燒綠石化合物Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>進行磁性研究。
在本次研究裡,我們使用固態合成法燒製多晶樣品Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>。在Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>的熱容和磁化率量測中,於146、21和1.8 K處出現三個異常,分別對應於Ru<sup>4+</sup>有序、磁矩傾斜以及Nd<sup>3+</sup>有序。而在施加磁場後,熱容的峰值逐漸移動並變寬,這促使我們在施加磁場下進行中子粉末繞射實驗,以進一步研究其磁性結構的轉變。
Nd3+離子在50 mK時,其磁性結構為全進全出(all-in-all-out)的自旋組態。當施加磁場後,磁矩在高磁場下逐漸對齊成二進二出(two-in-two-out)的磁性結構,這讓人聯想到傳統自旋冰的自旋結構。在9 T中,Nd<sup>3+</sup>離子的磁矩估計為2.76(7) μB,而在400 mK的零場下,磁矩為1.54(2) μB。
μSR技術用於研究Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>的自旋動力學。在146 K的Ru<sup>4+</sup>有序溫度以下,可以觀察到由兩種不同的振盪頻率擬合的擺動不對稱光譜,其對應渺子所在的兩個不同的磁性位置。μSR實驗結果的相變溫度與中子和室內量測的結果一致。
Nd-pyrochlore compounds host moment fragmentation, octupolar order, and spin chirality, etc., novel phenomena. Here we report the studies on the double pyrochlore compound of Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> using neutron powder diffraction, μSR techniques, and in-house heat capacity, ac susceptibility measurements.
Polycrystalline Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> had been prepared for the studies. Heat capacity and magnetic susceptibility measurements on Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> reveal three anomalies at 146, 21, and 1.8 K corresponding to Ru<sup>4+</sup> ordering, moment canting, and Nd<sup>3+</sup> ordering separately. The peaks of heat capacity shift and broaden in applied fields gradually motivated us to carry out neutron powder diffraction experiments in applied fields to investigate the variations of magnetic structures.
The magnetic structure of Nd<sup>3+</sup> ion at 50 mK exhibits as an all-in-all-out spin configuration. When the fields were applied, the magnetic moments had been aligned gradually to a two-in-two-out magnetic structure at high field, reminiscent of spin configurations of a classical spin ice. The magnetic moment of the Nd<sup>3+</sup> ion is estimated as 2.76(7) μB in 9 T, in contrast to the moment of 1.54(2) μB in zero field and 400 mK. μSR experiments had been employed to study the spin dynamics of Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>. Wiggling asymmetry spectra, which can be fitted by two different oscillation frequencies, were observed below the Ru<sup>4+</sup> order temperature of 146 K, indicating two different magnetic sites where muons are located. The transition temperatures determined by μSR are consistent with the neutron and in-house measurements.
[1] J. S. Gardner et al., Magnetic pyrochlore oxides, Reviews of Modern Physics, 82, 53, (2010).
[2] A. P. Ramirez, Geometrical frustration in magnetism, Czechoslovak Journal of Physics, 46, 3247, (1996).
[3] R. Moessner et al., Geometrical frustration, Phys. Today, 59, 24, (2006).
[4] P. W. Anderson, Ordering and Antiferromagnetism in Ferrites, Physical Review, 102, 1008, (1956).
[5] J. Villain, Insulating spin glasses, Zeitschrift für Physik B Condensed Matter, 33, 31, (1979).
[6] J. E. Greedan, Geometrically frustrated magnetic materials, Journal of Materials Chemistry, 11, 37, (2001).
[7] M. J. Harris et al., Geometrical Frustration in the Ferromagnetic Pyrochlore Ho<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>, Physical Review Letters, 79, 2554, (1997).
[8] C. R. Wiebe et al., Frustration under pressure: Exotic magnetism in new pyrochlore oxides, APL Materials, 3, 041519, (2015).
[9] M. A. Subramanian et al., Oxide pyrochlores — A review, Progress in Solid State Chemistry, 15, 55, (1983).
[10] V. K. Anand et al., Observation of long-range magnetic ordering in pyrohafnate Nd<sub>2</sub>Hf<sub>2</sub>O<sub>7</sub>: A neutron diffraction study, Physical Review B, 92, 184418, (2015).
[11] V. K. Anand et al., Muon spin relaxation and inelastic neutron scattering investigations of the all-in/all-out antiferromagnet Nd<sub>2</sub>Hf<sub>2</sub>O<sub>7</sub>, Physical Review B, 95, 224420, (2017).
[12] J. Xu et al., Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>, Physical Review B, 92, 224430, (2015).
[13] J. Xu et al., Spin dynamics of the ordered dipolar-octupolar pseudospin-1/2 pyrochlore Nd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> probed by muon spin relaxation, Physical Review B, 94, 064425, (2016).
[14] A. Bertin et al., Nd<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>: An all-in--all-out pyrochlore magnet with no divergence-free field and anomalously slow paramagnetic spin dynamics, Physical Review B, 92, 144423, (2015).
[15] P. Dalmas de Réotier et al., Slow spin tunneling in the paramagnetic phase of the pyrochlore Nd<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>, Physical Review B, 95, 134420, (2017).
[16] H. Guo et al., Direct determination of the spin structure of Nd<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> by means of neutron diffraction, Physical Review B, 94, 161102, (2016).
[17] H. Guo et al., Magnetic order in the pyrochlore iridate Nd<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> probed by muon spin relaxation, Physical Review B, 88, 060411, (2013).
[18] R. Asih et al., Magnetic Moments and Ordered States in Pyrochlore Iridates Nd<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> and Sm<sub>2</sub>Ir<sub>2</sub>O<sub>7</sub> Studied by Muon-Spin Relaxation, Journal of the Physical Society of Japan, 86, 024705, (2017).
[19] R. G. Melko et al., Monte Carlo studies of the dipolar spin ice model, Journal of Physics: Condensed Matter, 16, R1277, (2004).
[20] H. W. J. Blöte et al., Heat-capacity measurements on rare-earth double oxides R<sub>2</sub>M<sub>2</sub>O<sub>7</sub>, Physica, 43, 549, (1969).
[21] S. T. Ku et al., Low temperature magnetic properties of Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>, Journal of Physics: Condensed Matter, 30, 155601, (2018).
[22] M. E. Brooks-Bartlett et al., Magnetic-Moment Fragmentation and Monopole Crystallization, Physical Review X, 4, 011007, (2014).
[23] S. Petit et al., Observation of magnetic fragmentation in spin ice, Nature Physics, 12, 746, (2016).
[24] C. L. Henley, The “Coulomb Phase” in Frustrated Systems, Annual Review of Condensed Matter Physics, 1, 179, (2010).
[25] S. Redfern, Elementary Scattering Theory For X-ray and Neutron Users, by D.S. Sivia, Contemporary Physics, 52, 498, (2011).
[26] D2 PHASER Diffraction Solutions, http://cste.sut.ac.th/2014/wp-content/uploads/2013/12/D2_PHASER_Brochure_DOC-B88-EXS017.pdf.
[27] É. d. T. de Lacheisserie et al., Magnetism: II-Materials and Applications, Springer US, Boston, MA, 235, (2002).
[28] J. Clarke et al., The SQUID Handbook, 1, (2004).
[29] MPMS 3 Product Description, https://www.qdusa.com/siteDocs/productBrochures/1500-102.pdf.
[30] PPMS® Platform Measurement Options, https://www.qdusa.com/siteDocs/productBrochures/1084-500.pdf.
[31] Magnetic Property Measurement System® MPMS 3 User’s Manual, https://www.mrl.ucsb.edu/sites/default/files/mrl_docs/instruments/1500-100%20Rev.%20F1%20MPMS%203%20Users%20Manual.pdf.
[32] MPMS3 - An Introduction (Webinar), https://www.youtube.com/watch?v=SdirI2kkdO8&feature=emb_logo.
[33] Magnetic Property Measurement System SQUID VSM User’s Manual, https://manualzz.com/doc/6686090/magnetic-property-measurement-system-squid-vsm-user-s-manual.
[34] Physical Property Measurement System Hardware Manual, https://erc.ncat.edu/Facilities/Manuals/PPMS.pdf.
[35] Physical Property Measurement System Heat Capacity Option User’s Manual https://www.mrl.ucsb.edu/sites/default/files/mrl_docs/instruments/hcapPPMS.pdf.
[36] Introduction to: AC Susceptibility, https://www.qdusa.com/siteDocs/appNotes/1078-201.pdf.
[37] Physical Property Measurement System AC Measurement System (ACMS) Option User’s Manual https://web.njit.edu/~tyson/PPMS_Documents/PPMS_Manual/1084-100%20C1%20ACMS%20manual.pdf.
[38] ACMSII Option (Webinar), https://youtu.be/yroYi6x7yX8.
[39] Synchrotron Radiation - A Form of Light, https://www.nsrrc.org.tw/english/lightsource.aspx.
[40] P. Willmott, An Introduction to Synchrotron Radiation, 15, (2011).
[41] A. Balerna et al., Synchrotron Radiation: Basics, Methods and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 3, (2015).
[42] P. Willmott, An Introduction to Synchrotron Radiation, 1, (2011).
[43] D. Viterbo et al., Synchrotron Radiation: Basics, Methods and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 241, (2015).
[44] P. Willmott, An Introduction to Synchrotron Radiation, 133, (2011).
[45] V. K. Pecharsky et al., Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer US, Boston, MA, 151, (2009).
[46] The Commissioning of Powder Diffraction at TPS 09A Beamline, http://tpsbl.nsrrc.org.tw/userdata/upload/09A/HRXRD-20160921.pdf.
[47] 09A Temporally Coherent X-ray Diffraction, http://tpsbl.nsrrc.org.tw/bd_page.aspx?lang=en&pid=1015&port=09A.
[48] D. L. Price et al., Experimental Methods in the Physical Sciences, Academic Press, 1, (2013).
[49] B. T. M. Willis et al., Experimental neutron scattering, Oxford University Press, 15, (2017).
[50] T. Brueckel et al., Neutron scattering Lectures, 4.9, (2012).
[51] V. O. Garlea et al., Experimental Methods in the Physical Sciences, Academic Press, 203, (2015).
[52] P. L. Bernardo et al., Handbook of Materials Characterization, Springer International Publishing, Cham, 1, (2018).
[53] G. J. McIntyre et al., Neutron scattering at the OPAL research reactor, Journal of Physics: Conference Series, 746, 012001, (2016).
[54] A. J. Studer et al., Wombat: The high-intensity powder diffractometer at the OPAL reactor, Physica B: Condensed Matter, 385-386, 1013, (2006).
[55] S. J. Blundell, Spin-polarized muons in condensed matter physics, Contemporary Physics, 40, 175, (1999).
[56] Muon Spin Rotation/Relaxation/Resonance (µSR), http://www.chem.ubc.ca/sites/default/files/users/dgf/musrbrochure.pdf.
[57] F. Bert, Local probes of magnetism, NMR and μSR: A short introduction, JDN, 13, 03001, (2014).
[58] Physics with Muons: From Atomic Physics to Solid State Physics, https://www.psi.ch/en/lmu/lectures.
[59] P. D. d. Réotier et al., Muon spin rotation and relaxation in magnetic materials, Journal of Physics: Condensed Matter, 9, 9113, (1997).
[60] Paul Scherrer Institute: Swiss Muon Source SµS, http://rsc.riken.jp/fjworkshop2014/participants/facility/PSI_SmuS.pdf.
[61] GPS User Guide, https://www.psi.ch/sites/default/files/import/smus/InstrumentGpsEN/User_Guide_present_version.pdf.
[62] General Purpose Surface-Muon Instrument (GPS), https://www.psi.ch/en/smus/gps.
[63] Low Temperature Facility Instrument (LTF), https://www.psi.ch/en/smus/ltf.
[64] S.-W. Chen et al., Low temperature structural anomalies arising from competing exchange interactions in pyrochlore Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> probed by XRD and EXAFS, Physical Chemistry Chemical Physics, 17, 23667, (2015).
[65] M. W. Gaultois et al., Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>, Journal of Physics: Condensed Matter, 25, 186004, (2013).
[66] N. Taira et al., Specific Heat and ac Susceptibility Studies on Ruthenium Pyrochlores R<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> (R=Rare Earths), Journal of Solid State Chemistry, 152, 441, (2000).
[67] N. Taira et al., Magnetic susceptibility and specific heat studies on heavy rare earth ruthenate pyrochlores R<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> (R = Gd–Yb), Journal of Materials Chemistry, 12, 1475, (2002).
[68] M. Ito et al., Neutron Diffraction Study of Pyrochlore Compound R<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> (R=Y, Nd) above and below the Spin Freezing Temperature, Journal of the Physical Society of Japan, 69, 888, (2000).
[69] L. Opherden et al., Evolution of antiferromagnetic domains in the all-in-all-out ordered pyrochlore Nd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>
Physical Review B, 95, 184418, (2017).
[70] D. L. Price et al., Neutron Scattering-Magnetic and Quantum Phenomena, Elsevier, 239, (2015).
[71] J. D. M. Champion et al., Er<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>: Evidence of quantum order by disorder in a frustrated antiferromagnet, Physical Review B, 68, 020401, (2003).
[72] Z. L. Dun et al., Antiferromagnetic order in the pyrochlores R<sub>2</sub>Ge<sub>2</sub>O<sub>7</sub> (R=Er,Yb), Physical Review B, 92, 140407, (2015).
[73] A. M. Hallas et al., XY antiferromagnetic ground state in the effective S=1/2 pyrochlore Yb<sub>2</sub>Ge<sub>2</sub>O<sub>7</sub>, Physical Review B, 93, 104405, (2016).
[74] S. E. Palmer et al., Order induced by dipolar interactions in a geometrically frustrated antiferromagnet, Physical Review B, 62, 488, (2000).
[75] A. M. Hallas et al., Phase Competition in the Palmer-Chalker XY Pyrochlore Er<sub>2</sub>Pt<sub>2</sub>O<sub>7</sub>, Physical Review Letters, 119, 187201, (2017).
[76] J. R. Stewart et al., Collective dynamics in the Heisenberg pyrochlore antiferromagnet Gd<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>, Physical Review B, 78, 132410, (2008).
[77] A. Yaouanc et al., Dynamical Splayed Ferromagnetic Ground State in the Quantum Spin Ice Yb<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>, Physical Review Letters, 110, 127207, (2013).
[78] R. S. Hayano et al., Zero-and low-field spin relaxation studied by positive muons, Physical Review B, 20, 850, (1979).
[79] J. Satooka et al., A μSR study of CeB<sub>2</sub>C<sub>2</sub>, Physica B: Condensed Matter, 326, 585, (2003).
[80] F. L. Pratt, Field dependence of μSR signals in a polycrystalline magnet, Journal of Physics: Condensed Matter, 19, 456207, (2007).
[81] Y.-P. Huang et al., Quantum Spin Ices and Topological Phases from Dipolar-Octupolar Doublets on the Pyrochlore Lattice, Physical Review Letters, 112, 167203, (2014).
[82] E. Lhotel et al., Fluctuations and All-In--All-Out Ordering in Dipole-Octupole Nd<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>, Physical Review Letters, 115, 197202, (2015).