| 研究生: |
蔡百祥 Tsai, Pai-Hsiang |
|---|---|
| 論文名稱: |
平鈑膨脹儀在評估土壤液化阻抗的研究 A Study on the Flat DMT-based Method for Evaluating Liquefaction Resistance of Soils |
| 指導教授: |
李德河
Lee, Der-Her |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 229 |
| 中文關鍵詞: | 液化 、地震 、膨脹儀試驗(DMT) 、水平應力指數(KD) 、膨脹模數(ED) |
| 外文關鍵詞: | horizontal stress index (KD), flat dilatometer test (DMT), liquefaction, earthquake, dilatometer modulus (ED) |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1964年日本Niigata大地震,造成大規模地表沉陷、建築物傾斜、翻倒與地下結構物上浮。同年美國發生Alaska大地震,也因為土壤液化導致地表滑動,造成多處橋樑基礎破壞。1999年發生於台灣的集集大地震,同樣造成許多地區有嚴重的土壤液化災情。如何準確預測地層,是否會因地震造成液化,一直是大地工程師相當關切的問題,也是學術界一直努力的目標。
土壤液化評估其實相當複雜,根據過去的研究顯示,土壤液化阻抗會受土壤相對密度(Dr)、有效覆土應力、細粒料含量(FC)、靜止土壓力係數(K0)、先前預應變、過壓密比(OCR)及Aging等多因素影響,要能夠完全考慮這些因素其實相當困難。目前工程界較常使用的有標準貫入試驗(SPT)和荷蘭圓錐貫入試驗(CPT)簡易液化評估法,基本上這兩個簡易評估法,是直接利用試驗所得之SPT-N值或錐尖阻抗(qc),計算土壤液化阻抗。雖然工程界已廣泛運用SPT和CPT簡易液化評估法,實務上,發展更好的簡易液化評估法仍然是相當值得進行的研究。由於DMT試驗所獲得水平應力指數(KD)對上述影響因素不僅較具靈敏反應,並反應現地側向與垂直向應力狀態。另外,膨脹模數(ED)意指土壤側向受壓而產生有限位移量,所需的壓力。本研究嘗試以膨脹儀試驗(DMT),發展另一簡易液化評估法。
本研究採用DMT試驗量測的水平應力指數(KD)與膨脹模數(ED),作為簡易液化評估法的輸入參數,計算土壤液化阻抗。研究方法係先在6處不同場址同時執行SPT、CPT與DMT試驗。依試驗結果,建構土壤KD、ED值和乾淨砂等效正規化貫入阻抗(N1,60cs),以及乾淨砂等效正規化錐尖阻抗(qc1N,cs)的關係式,其後發展一套土壤液化阻抗的DMT簡易評估模式。最後利用國內外搜集到的歷史案例,就所建立模式的評估結果準確性進行驗證,結果顯示本文建議的DMT簡易評估模式,可準確判定土壤會否液化。本研究建立的DMT簡易液化評估法,可以提供給工程界進行土壤液化潛能評估時另一個參考。
The extensive ground surface settlement, tilt and overturn of buildings, and floatation of buried structures were caused by the Niigata earthquake in 1964. In the same year, many foundations of bridges were damaged by the liquefaction-induced ground movements caused by the Alaska earthquake in United States. Also, in the 1999 Chi-Chi earthquake of Taiwan, the severe liquefaction-induced hazards were extensively observed in many areas. The problem how to accurately predict the liquefaction potential of soils caused by earthquake has received much attention from geotechnical engineers and been the crucial objective of the academia.
The liquefaction evaluation of soil is a complicated problem. According to the previous studies, the liquefaction resistance of soil would be affected by a large number of factors such as relative density (Dr), effective overburdened stress, fines content (FC), coefficient of earth pressure at rest (K0), prestraining, over-consolidation ratio (OCR), and aging. It would be very difficult to incorporate all the factors into the liquefaction evaluation. At present, the simplified evaluation methods of standard penetration test (SPT) and cone penetration test (CPT) are commonly used by engineers. Basically, the two methods directly employ the measured SPT blow count (N value) and cone resistance (qc) to calculate the liquefaction resistance of soils. Although the SPT- and CPT-based liquefaction evaluation methods are extensively adopted by the engineer, it is desirable to develop additional simplified liquefaction evaluation method in practice. The horizontal stress index (KD) measured in DMT test is not only sensitive to the above-mentioned factors influencing the liquefaction resistance, but also involves to the in-situ horizontal and vertical stress conditions. In addition, the dilatomater modulus (ED) is representative to the pressure corresponding to the limited deformation of the soil when the soil is subjected to the horizontal pressure. To this end, this study attempts to develop a DMT-based simplified liquefaction evaluation method.
This study adopts the horizontal stress index (KD) and dilatometer modulus (ED) measured in the DMT as the input parameter of the simplified liquefaction evaluation method to calculate the liquefaction resistance of soils. First, the flat dilatometer test (DMT), standard penetration test (SPT), and cone penetration test (CPT) were conducted side-by-side at six sites for establishing the correlations between horizontal stress index and dilatometer modulus and blow counts. Subsequently, a simplified model for evaluating liquefaction resistance of soils was developed. Then, a number of worldwide earthquake-induced liquefaction cases are collected and used to validate the accuracy of the developed model. The analysis results show that the capability of the model in estimating the liquefaction resistance of soils is validated. This model can be integrated with the existing models to completely evaluate the liquefaction resistance of soils.
參考文獻
1.王柏雁,「膨脹儀試驗在粉砂中的標定」,國立交通大學土木工程研究所碩士論文,1998。
2.經濟部中央氣象局「地震震度分級表」,http://scman.cwb.gov.tw/eqv5/
eq_protect/protect.htm,台北,台灣,2000。
3.古志生,「CPT土壤分類及液化評估之研究」,國立成功大學土木工程研究所博士論文,2001。
4.林朝棨編篡,「台灣省通志稿,土地志、地理篇」,台灣省文獻委員會出版,1957。
5.李德河、鍾廣吉、廖志中、胡賢能、古志生、蔡百祥,「新竹、苗栗與台南都會區地下地質與工程環境調查研究(1/2)期末報告書-台南都會區」,經濟部中央地質調查所委託,報告編號93-23,2004。
6.李德河、鍾廣吉、廖志中、胡賢能、古志生、蔡百祥,「新竹、苗栗與台南都會區地下地質與工程環境調查研究(2/2)期末報告書-台南都會區」,經濟部中央地質調查所委託,報告編號94-24,2005。
7.吳東錦、陳于高、劉聰桂,「臺南臺地臺南層之沈積史與新期構造研究」,地質,第12卷,第2期,第167-184頁,1992。
8.亞新工程顧問股份有限公司,「土壤液化評估與處理對策研擬第一期計畫(彰化縣員林鎮、大村鄉及社頭鄉)總報告」,行政院國家科學委員會委託,計畫編號:99068,台北,2000a。
9.亞新工程顧問股份有限公司,「南投、霧峰地區土壤液化調查報告」,行政院國家科學委員會委託,台北,2000b。
10.許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,國立成功大學土木工程研究所碩士論文,2003。
11.張麗旭、周敏、陳培源,「民國35年12月5日台南之地震」,台灣省地質調查所彙刊,第1號:11-18,台北,1947。
12.鄭世楠、葉永田、徐明同、辛在勤「台灣十大災害地震圖集」,中央氣象局,報告編號 CWB-9-1999-002-9:153-174,台北,1999。
13.Ambraseys, N. N., “Engineering seismology”, Earthquake Engineering and Structural Dynamics, Vol. 17, pp. 1-105, 1988.
14.Amini, F. and Qi, G. Z., “Liquefaction testing of stratified silty sands”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 3, pp.208-217, 2000.
15.Andrus, R. D. and Stokoe II, K.H., “Liquefaction resistance based on shear wave velocity”, Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report No. NCEER-97-0022, National Center for Earthquake Engineering Research, State University of New York at Buffalo, pp. 89-128, 1997.
16.Arango, I., “ Magnitude scaling factors for soil liquefaction evaluations”, Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 11, pp. 929-936, 1996.
17.Arango, I., Lewis, M. R. and Kramer, C., “Updated liquefaction potential analysis eliminates foundation retrofitting of two critical structures”, Soil Dynamics and Earthquake Engineering, Vol. 20, pp.17-25, 2000.
18.Balachowski, L., “Seashore sand parameters with DMT and CPTU tests”, Proceedings of 2nd International Flat Dilatometer Conference, pp.342-347, 2006.
19.Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M. and Pasqualini, E., “Design parameters for sands from CPT”, II ESOPT, Amsterdam, 1982.
20.Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M., Marchetti, S. and Pasqualini, E., “Flat dilatometer tests in calibration chambers”, Proceedings of the In Situ′86, ASCE Special Conference on Use of In Situ Tests in Geotechnical Engineering, Virginia Technical, Blacksburg, VA, ASCE Geotechnical Special Publish, No. 6, pp.431-446, 1986a.
21.Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M., Marchetti, S. and Pasqualini, E., “Interpretation of CPT and CPTUs. 2nd part: Drained penetration of sands”, Proceedings of 4th International Geotechnical Seminar, Singapore, pp.143-156, 1986b.
22.Baligh, M. M. and Scott, r. F., “Quasi static deep penetration in clays”, Journal of Geotechnical Engineering, ASCE, Vol. 101, No. GT11, pp.1119-1133, 1975.
23.Bellotti, R., Ghionna, V., Jamiolkowski, M., Manasero, M. and Pasqualini, E., “Evaluation of sand strength from CPT”, Symposium on Soil and Rock Investigations by In-situ Testing, Paris, 1983.
24.Bieganousky, W. A. and Marcuson, W. F. III., “Liquefaction potential of dams and foundations-report 1: laboratory standard penetration test on Reid Bedford Model and Ottawa sands”, Report S-76-2, Waterways Experimental Station, Oct., 1976.
25.Boulanger, R. W. and Idriss, I. M., “State normalization of penetration resistance and the effect of overburden stress on liquefaction resistance”, Proceedings of 11th International Conference on Soil Dynamics and Earthquake Engineering and 3rd International Conference on Earthquake Engineering, University of California, Berkeley, CA, 2004.
26.Casagrande, A., “Characteristics of cohessionless soils affecting the stability of slopes and earth fills”, Journal of the Boston Society of Civil Engineers 1936, reprinted in Contributions to Soil Mechanics, Boston Society of Civil Engineers, pp.257-276, 1940.
27.Casagrande, A., “On liquefaction phenomena”, Geotechnique, Vol. 21, No. 3, pp.197-202, 1971.
28.Castro, G., “Liquefaction and cyclic mobility of saturated sands”, Journal of the Geotechnical Engineering Division, Vol. 101, No. GT6, pp.551-569, 1975.
29.Chien, L. K., Oh, Y. N. and Chang, C. H., “Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil”, Canadian Geotechnical Journal, Vol. 39, pp.254-265, 2002.
30.Clarke, B.G., “Pressuremeters in Geotechnical Design”, Blackie and Academic and Professional, Glasgow, UK, 1995.
31.Davidson, J. and Boghrat, A., “Displacements and Strains around probes in sand”, Proceedings of ASCE Special Conference on Geotechnical Practice in Offshore Engineering, Austin, TX, pp.182-203, 1983.
32.De Alba, P., Seed, H. B. and Chan, C. K., “Sand liquefaction in large-scale simple shear tests”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT9, pp.909-927, 1976.
33.Denisov, N. Y., Duranti, E. A. and Khazanov, M. I., “Studies of changes of strength and compressibility of hydraulically filled sands in time”, Proceedings of European Conference on Soil Mechanics and Foundation Engineering, Wesibaden ,Germany, Vol. 1, pp.221-225, 1963.
34.Douglas, B. J. and Olsen, R. S., “Soil classification using electric cone penetrometer”, Symposium on Cone Penetration Testing and Experience, Geotechnical Engineering Division, ASCE, St. Louis, pp.209-227, 1981.
35.Durgunoglu, H. T. and Mitchell, J. K., “Static penetration resistance of soils, I-Analysis, II- Evaluation of the theory and implication for practice”, Proceedings of ASCE Special Conference on In Situ Measurement of Soil Properties, Raleigh, NC, Vol. 1, 1975.
36.Finn, W. D. L., Bransby, P.L. and pickering, D. J., “Effect of strain history on liquefaction of sands”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM6, pp.1917-1934, 1970.
37.Gambin, M.P., “The history of pressuremeter practice in France”, Proceedings of 3rd International Symposium on Pressuremeter, Oxford, pp.5-24, 1990.
38.Gibbs, H. J., and Holtz, W. G., “Research on determining the density of sand by spoon penetration test”, Proceedings of VI International Conference on Soil Mechanics and Foundations Engineering, Vol. 1, pp.35-39, 1957.
39.Grasso, S. and Maugeri, M., “Using KD and Vs from seismic dilatometer(SDMT) for evaluating soil liquefaction”, Proceedings of 2nd International Flat Dilatometer Conference, pp.281-288, 2006.
40.Gratchev, I. B., Sassa, K., Osipov, V. I. and Sokolov, V. N., “The liquefaction of clayey soils under cyclic loading”, Engineering Geology, Vol. 86, pp.70-84, 2006.
41.Gravesen, S., “Elastic semi-infinite medium bounded by a rigid wall with a circular hole”, Laboratoriet for Bygninsetknik, Danmarks Tekniske Hψjskole, Meddelelse, Copenhagen, No. 10, 1960.
42.Guo, T. and Prakash, S., “Liquefaction o silts and silt-clay mixtures”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 8, pp.706-710, 1999.
43.Harder, L.F. Jr., “Application of the becker penetration test for evaluating the liquefaction potential of gravelly soils”, Proceedings, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report No. NCEER-97-0022, National Center for Earthquake Engineering Research, State University of New York at Buffalo, pp.129-148, 1997.
44.Heaton, T. H., Tajima, F. and Mori, A.W., “Estimating ground motions using recorded accelerograms”, unpublished report by Dames and Moore to Exxon Production Research Co., Houston, Texas, 1982.
45.Henderson, G., Smith, P. D. K. and St John, H D., “The development of the push-in pressuremeter for offshore site investigation”, Proceedings of the Conference on Offshore Site Investigation, London, pp.159-167, 1979.
46.Huang, A. B. and Ma, M. Y., “An analytical study of cone penetrations tests in granular material”, Canadian Geotechnical Journal, Vol. 31, pp.91-103, 1994.
47.Idriss, I. M., Arango, I. and Grogan, G., “Study of liquefaction in November 23, 1977 Earthquake, San Juan Province, Argentina”, Woodward-Clyde Consultants, San Francisco, Calif., 1979.
48.Idriss, I. M., “An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential”, Proceedings of TRB Workshop on New Approaches to Liquefaction, Publication No. FHWA-RD-99-165, Federal Highway Administration, 1999.
49.Idriss, I. M. and Boulanger, R. W., “Semi-empirical procedures for evaluating liquefaction potential during earthquakes”, Soil Dynamics and Earthquake Engineering, Vol. 26, pp.115-130, 2006.
50.Ishihara, K., Troncoso, J., Kawase, Y. and Takahashi, Y., “Cyclic strength characteristics of tailings materials”, Soils and Foundations, Vol. 20, No. 4, pp.127-142, 1980.
51.Ishihara, K., “Stability of natural deposits during earthquakes”, Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp.321-376, 1985.
52.Ishihara, K., “Liquefaction and flow failure during earthquakes”, Geotechnique, Vol. 43, No. 3, pp.351-415, 1993.
53.Ishihara, K., “Estimate of relative density from in-situ penetration tests”, Proceedings of the International Conference on In Situ measurement of Soil Properties and Case Histories, Bali, pp.17-26, 2001.
54.Iwasaki, T., Tatsuoka, F., Tokida, K. and Yasuda, S., “A practical method for assessing soil liquefaction potential based on case studies at various studies in Japan”, Proceedings of 5th Japan Symposium on Earthquake Engineering; Proceedings of 2nd International Conference on Microzonation for Safer Construction Research and Application, San Francisco, Vol. 2, pp. 885-896, 1978.
55.Iwasaki, T., Arakawa, T. and Tokida, K., “Simplified procedures for assessing soil liquefaction during earthquakes”, Soil Dynamics and Earthquake Engineering Conference, Southampton, pp. 925-939, 1982.
56.Iwasaki, T., “Soil liquefaction studies in Japan: state-of-the-art“, Soil Dynamics and Earthquake Engineering, Vol. 5, No. 1, pp.1-68, 1986.
57.Iwasaki, K., Tsuchiya, H., Sakai, Y. and Yamamoto, Y., “Applicability of the Marchetti dilatometer test to soft ground in Japan”, Proceedings of GEOCAOST ′91, Yokohama, 1991.
58.Jamiolkowski, M., Ladd, C. C., Germaine, J. T. and Lancellotta, R., “New development in the field and laboratory testing of soils”, Proceeding of 11th International Conference on Soil Mechanics and Foundation Engineering, No. 1, pp.57-153, 1985a.
59.Jamiolkowsi, M., G. Baldi, R. Bellotti, V. Ghionna, and E. Pasqualini, ”Penetration resistance and liquefaction of sands”, Proceeding of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, No. 4, pp.1891-1896, 1985b.
60.Jamiolkowski, M., “Opening address”, Proceedings of the International Symposium on Cone Penetration Testing-CPT’95, Linkoping, Sweden, Vol. 3, pp.7-15, 1995.
61.Jamiolkowski, M. and Lo Presti, D. C. F., “DMT research in sand. What can be learned from calibration chamber tests”, Proceedings of 1st international Conference on Site Characterization ISC′98, Atlanta, Oral presentation, 1998.
62.Jendeby, L., “Deep Compaction by Virbrowing“, Proceedings of Nordic Geotechnical Meeting, NGM-92, No. 1, pp.19-24, 1992.
63.Jezequel, J.F., Lemasson, H. and Touze, J., “Le pressiometre Louis Menard quelques problemes de mise en oeuvre et leur influence sur les valeurs pressiometriques”, Bull.de Liaison du LCPC, No. 32, pp.97-120, 1968.
64.Joshi, R. C., Acharui, G. and Kaniral, S. R., “Effect of aging on the penetration resistance of sands”, Canadian Geotechnical Journal, Vol. 32, pp.767-782, 1995.
65.Kamey, T. and Iwasaki, K., “Evaluation of undrained shear strength of cohesive soils using a flat dilatometer”, Soils and Foundations, Vol. 35, No. 2, pp.111-116, 1995.
66.Kishida, H., “Damage to reinforced concrete buildings in Niigata City with special reference to foundation engineering”, Soils and Foundations, Vol. 6, No. 1, pp.71-88, 1966.
67.Koizumi,Y., “Changes in density of sand subsoil caused by the Niigata Earthquake”, Soils and Foundations, Vol. 6, No. 2, pp.38-44, 1966.
68.Kovacs, W. D., Salomone, L. A., and Yokel, F. Y., “Comparison of energy method”, National Bureau of Standards Report to the US Nuclear Regulatory Commission, Nov., 1983.
69.Kokusho, T., Yoshida, Y., Nishi, K. and Esashi, Y., “Evaluation of seismic stability of dense sand layer (part1)-dynamic strength characteristics of dense sand”, Report 383025. Electric Power Central Research Institute, Japan (In Japanese), 1983.
70.Kulhawy, F. H. and Mayne, P. W., “ Manual on estimating soil properties for foundation design”, Final Report 1493-6, EL-6800, Electric Power Research Institute, Palo Alto, Calif., 1990.
71.Lambrechts, J. R. and Leonards, G. A., “Effects of stress history on deformation pf sand”, Journal of the Geotechnical Engineering Division, Vol. 104, No. GT11, pp.1371-1387, 1978.
72.Lee, K. J. and Seed, H. B., “Cyclic stress conditions causing liquefaction of sand”, Journal of the Soil Mechanics and Foundations Division Vol. 93, No. SM1, pp.47-70, 1967.
73.Leon, E., Gassman, S. L. and Talwani, P., “Accounting for soil aging when assessing liquefaction potential”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 3, pp.363-377, 2006.
74.Leonards, G. A., “General discussion of session III”, ASCE performance of Earth and Earth-Supported Structures, Purdue University Lafayette Ind., Vol. 3, pp.169-173, 1972.
75.Mair, R.J. and Wood, D.M., “Pressuremeter Testing: Methods and Interpretation”, CIRIA Ground Engineering Report, London, England, Butterworths, 1987.
76.Marchetti, S., “In situ tests by flat dilatometer”, Journal of the Geotechnical Engineering Division, Vol. 106, No. GT3, pp.299-321, 1980.
77.Marchetti, S., ”Closure of in situ tests by flat dilatometer”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT6, pp.832-837, 1981.
78.Marchetti, S. and Crapps, D. K., “Flat dilatometer manual”, Internal Report of G. P. E. Inc., 1981.
79.Marchetti, S., “Detection of liquefiable sand layers by means of quasi-static penetration tests”, Proceedings of 2nd European Symposium on Penetration Testing, Amsterdam, pp.24-27, 1982.
80.Marchetti, S., “On the field determining of K0 in sand“, Discussion Session No. 2A, Proceedings of 11th International Conference Soil Mechanics and Foundation Engineering, San Francisco, Vol. 5, pp.2667-2673, 1985.
81.Marchetti, S., “The flat dilatometer: design applications“, Proceedings of 3rd International Geotechnical Engineering Conference, Keynote lecture, Cairo University, pp.421-448, 1997.
82.Marchetti, S., Monaco, P., Totani, G. and Calabrese, M., “The flat dilatometer test (DMT) in soil investigations – A report by the ISSMGE committee TC16”, Proceedings from 2nd international flat dilatometer conference, pp.7-48, 2001.
83.Marchetti, S., Monaco, P., Totani, G. and Marchetti, D., “In situ tests by seismic dilatometer(SDMT)”, ASCE Geotechnical Special Publication honoring Dr. john H. Schmertmann, From Research to Practical Geotechnical Engineering, GSP No. 170, Geo-Institute Meeting in New Orleans, pp.109-138. 2008.
84.Marcuson III, W. F. and Bieganousky, W. A., “Laboratory standard penetration tests on fines sands”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT5, pp. 565-588, 1976.
85.Marcuson III, W. F., “Definition of terms related to liquefaction”, Journal of the Geotechnical Engineering Division, Vol. 104, No. GT9, pp.1197-1200, 1978.
86.Mayne, P. W., “Stress-strain-strength-flow parameters from enhanced in-situ tests”, Proceedings of the International Conference on In Situ measurement of Soil Properties and Case Histories, Bali, pp.27-47, 2001.
87.McCulloch, D. S. and Bonilla, M. G., “Railroad damage in the Alaska earthquake”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 93 No. SM5, pp.89-100, 1967.
88.Menard, L., “An apparatus for measuring the strength of soil in place”, Thesis, University of Illinois, 1957.
89.Mersi, G., Feng, T. W. and Benak, J. M., “Postdendification penetration resistance of clean sands”, Journal of Geotechnical Engineering, Vol. 116, No. 7, pp.1095-1115, 1990.
90.Mitchell, J. K. and Solymar, Z. V., “Tme-dependent strength gain in freshly deposited or densified sand”, Journal of the Geotechnical Engineering, Vol. 110, No. 11, pp.1559-1576, 1984.
91.Mitchell, J. K., “Practical problems from surprising soil behavior”, Journal of the Geotechnical Engineering, Vol. 112, No. 3, pp.259-289, 1986.
92.Mitchell, J.K., Lodge, A. L., Coutinho, R. Q., Kayen, R. E., Seed, R. B., Nishio, S. and Stokoe, K.H., “Insitu test results from four Loma Prieta earthquake liquefaction sites: SPT, CPT, DMT and shear wave velocity”, Report No. UCB/EERC-94/04, Earthquake Engineering Research Center, University of California, Berkeley, 1994.
93.Mogami, T. and Kubu, K., “The behavior of soil during vibration”, Proceedings of 3rd International Conference on Soil Mechanics and Foundation Engineering, Zurich, Vol. 1, pp.152-155, 1953.
94.Monaco, P., Marchetti, S. and Calabrese, M., “Sand liquefiability assessment by flat dilatometer test(DMT)”, Proceedings of XVI International Conference of Soil Mechanics and Geotechnical Engineering, Osaka, Japan, No. 4, pp.2693-2697, 2005.
95.Monaco, P. and Marchetti, S., “Evaluating liquefaction potential by seismic dilatometer(SDMT) accounting for aging/stress history”, Proceedings of 4th International Conference on Earthquake Geotechnical Engineering, Thessalonik, Greecei, No. 1626, pp.139-150, 2007.
96.Ni, Q., Tan, T. S., Dasari, G. R. and Hight, D. W., “Contribution of fines to the compressive strength of mixed soils”, Geotechnique, Vol. 54, No. 9, pp.561-569, 2004.
97.Ohsaki, Y., “Niigata earthquakes, 1964 building damage and soil liquefaction”, Soils and Foundations, Vol. 6, No.2, pp.14-37, 1966.
98.Olsen, R. S., “Liquefaction analysis using the cone penetrometer test”, Proceedings of 8th Eighth World Conference on Earthquake Engineering, Vol. III, pp.247-254, 1984.
99.Olsen, R. S., “Soil classification and site characterization using the cone penetrometer test”, Proceedings of 1st Symposium on Penetration Testing (ISOPT-1), pp.887-893, 1988.
100.Olsen, R. S., “Normalization and prediction of geotechnical properties using the cone penetrometer test (CPT)”, Technical Report GL-94-29, USAE Waterways Experiment Station, Vicksburg, MS 39180 or Ph. D. Dissertation submitted to the University of California, Berkeley, 1994.
101.Olsen, R. S. and Mitchell, J. K., “CPT stress normalization and prediction of soil classification”, Proceedings of the International Symposium on Cone Penetration Testing-CPT’95, Linkoping, Sweden, 1995.
102.Olsen, R. S., “Cyclic liquefaction based on the cone penetrometer test”, Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report No. NCEER-97-0022, National Center for Earthquake Engineering Research, State University of New York at Buffalo, pp.225-276, 1997.
103.Peck, R. B., Hanson, W. E., and Thornburn, T. H. Foundation Engineering, John Wiley & Sons, Inc., New York, N.Y., 1974.
104.Pyke, R., “Discussion of liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on Evaluation of liquefaction resistance of soils by Youd et al.”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 3, pp.283-284, 2003.
105.Reyna, F. and Chameau, J. L., ”Dilatometer based liquefaction potential of sites in the Imperial Valley”, Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, No. 3, pp.385-392, 1991.
106.Robertson, P. K., Campanella, R. G., and Wightman, A., “SPT-CPT correlations”, Journal of Geotechnical Engineering, Vol. 109, No. 11, pp. 1449-1459, 1983.
107.Robertson, P. K. and Campanella, R. G., “Liquefaction potential of sands using the CPT”, Journal of Geotechnical Engineering, Vol. 111, No. 3, pp.384-403, 1985.
108.Robertson, P. K. and Campanella, R. G., “Estimating liquefaction potential of sands using the flat plate dilatometer”, Geotechnical Testing Journal, Vol. 9, No. 1, pp.38-40, 1986.
109.Robertson, P.K., “Soil classification using the cone penetration test”, Canadian Geotechnical Journal, Vol. 27, pp.151-158, 1990.
110.Robertson, P. K., “Suggested terminology for liquefaction”, Proceedings, 47th Canadian Geotechnical Conference, Halifax, Nova Scotia, pp.277-286, 1994.
111.Robertson, P. K. and Fear, C. E., “Liquefaction of sands and its evaluation”, Proceedings, IS Tokyo ’95, 1st International Conference on Earthquake Geotechnical Engineering, Keynote Lecture, 1995.
112.Robertson, P. K. and Wride, C. E., “Cyclic liquefaction and its evaluation based on SPT and CPT”, Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report No. NCEER-97-0022, National Center for Earthquake Engineering Research, State University of New York at Buffalo, pp.41-88, 1997.
113.Robertson, P. K. and Wride, C. E., “Evaluation cyclic liquefaction potential using the cone penetration test”, Canadian Geotechnical Journal, Vol. 35, pp. 442-459, 1998.
114.Ross, G. A., Seed, H. B. and Migliaccio, R. R., “Bridge foundation behavior in Alaska earthquake”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 95, No. SM4, pp.1007-1036, 1969.
115.Schmertmann, J. H., “Predicting the qc/N ratio-interpreting the dynamics of the Standard Penetration Test”, University of Florida Report to the Department of Transportation, FL, OCT., 1976.
116.Schmertmann, J. H., “Guidelines for cone penetration test, performance and design”, Report No. FHWA-TS-78-209, U. S. Department of Transportation, Federal Highway Administration, Washington, D. C., July, 1978.
117.Schmertmann, J. H., “A method for determining the friction angle in sands from the Marchetti dilatometer test (DMT)“, Second European Symposium on Penetration Testing, ESOPT-II, Amsterdam, Vol. 2, pp.853-861, 1982.
118.Schmertmann, J. H., “Revised procedure for calculating K0 and OCR from DMT′s with ID>1.2 and which incorporates the penetration measurement to permit calculating the plane strain friction angle”, DMT Digest No. 1, G. P. E. Inc., Gainesville, FL, 1983.
119.Schmertmann, J. H., Baker, W., Gupta, R. and Kessler, K., “CPT/DMT quality control of ground modification at a power plant“, Proceedings of the In Situ′86, ASCE Special Conference on Use of In Situ Tests in Geotechnical Engineering, Virginia Technical, Blacksburg, VA, ASCE Geotechnical Special Publish, No. 6, pp.985-1001, 1986.
120.Schmertmann, J. H., “The mechanical aging of soils”, Journal of the Geotechnical Engineering, Vol. 117, No. 9, pp.1288-1330, 1991.
121.Seed, H. B. and Lee, K. L., “Liquefaction of saturated sands during cyclic lading”, Journal of the Soil Mechanics and Foundations Division, Vol. 92, No. SM6, pp.105-134, 1966.
122.Seed, H. B., and Idriss, I. M., “Analysis of soil liquegaction: Niigata earthquake”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM3, pp.83-108, 1967.
123.Seed, H. B., and Idriss, I. M., “Simplified procedure for evaluation soil liquefaction potential”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp.1249-1273, 1971.
124.Seed, H. B., and Peacock, W. H., “Test procedures for measuring soil liquefaction characteristics”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp.1099-1119, 1971.
125.Seed, H. B., Mori, K., and Chan, C. K., “Influence of seismic history on liquefaction of sands”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT4, pp.257-270, 1977.
126.Seed, H. B., “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes”, Journal of the Geotechnical Engineering Division, Vol. 105, No. GT2, pp.201-255, 1979.
127.Seed, H. B., Arango, I. and Chan, C. K., Gomez-Masso, A. and Ascoli, R. G., “Earthquake-induced liquefaction near Lake Amatitlan, Guatemala”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT4, pp.501-518, 1981.
128.Seed, H. B. and Idriss, I. M., “Evaluation of liquefaction potential of sand deposits based on observations of performance in previous earthquakes”, Proceedings of ASCE National Convention, Geotechnical Engineering Division, St. Louis, Mo., Session No. 24, 1981.
129.Seed, H. B. and Idriss, I. M., “Ground motions and soil liquefaction during earthquakes”, Earthquake Engineering Research Institute Monograph, 1982.
130.Seed, H. B., Idriss, I. M. and Arango I., “Evaluation of liquefaction potential using field performance data”, Journal of Geotechnical Engineering, Vol. 109, No. 3, pp.458-482, 1983.
131.Seed, H. B., Tokimatsu, L.F., Harder, M. and Chung, R. M., “The influence of SPT procedures in soil liquefaction resistance evaluation”, Journal of Geotechnical Engineering, Vol. 111, No. 12, pp.1425-1445, 1985.
132.Shibata, T. and Teparaksa, W., “Evaluation of liquefaction potentials of soils using cone penetration tests”, Soils and Foundations, Vol. 28, No. 2, pp.49-60, 1988.
133.Skempton, A. W., “Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging, and overconsolidation”, Geotechnique, Vol. 36, No. 3, pp.425-447, 1986.
134.Stark, T. D. and Olsen, S. M., “Liquefaction resistance using CPT and field case histories”, Journal of Geotechnical Engineering, Vol. 121, No. 12, pp.856-869, 1995.
135.Thevanayagam, S., “Effect of fines and confining stress on undrained shear strength of silty sands”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 6, pp.479-491, 1998.
136.Thevanayagam, S. Fiorillo, M. and Liang, J., “Effect of non-plastic fines on undrained cyclic strength of silty sands”, Soil Dynamics Liquefaction, Geotechnical Special Publish, ASCE, Colorado, Vol. 107, pp.71-91, 2000.
137.Thevanayagam, S. and Mohan, S., “Intergranular state variables and stress-strain behaviour of silty sands”, Geotechnique, Vol.50, No. 1, pp.1-23, 2000.
138.Thevanayagam, S., Shenthan, T., Mohan, S. and Liang, J., “Undrained fragility of clean sands, silty sands, and sandy silt”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 10, pp.849-859, 2002.
139.Tokimatsu, K. and Yoshimi, T., “Field correlation of soil liquefaction with SPT and grain size”, Proceedings of the International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, MO, Vol. 1, pp.203-208, 1981.
140.Tokimatsu, K. and Yoshimi, Y., “Empirical correlation of soil liquefaction based on SPT N-values and fines content”, Soils and Foundations, Vol. 23, No. 4, pp.56-74, 1983.
141.Vaid, Y. P., Byrne, P. M. and Hughes, M. O., “Dilation aging and liquefaction potential”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No.GT7, pp.1003-1008, 1981.
142.Yoshimi, T. and Tokimatsu, K., “SPT practice survey and comparative tests”, Soils and Foundations, Vol. 23, No. 3, pp.105-111, 1983.
143.Yoshimi, T., Tokimatsu, K. and Oh-oka, H., “Comparison of SPT N-values by Gat-and-Rope method and Trip Monkey method”, Proceedings of 18th Annual Meeting, JSSMFE, 1983(in Japanese).
144.Yoshimi, T., Tokimatsu, K., Kaneko, O. and Makihara, Y., “Undrained cyclic shear strength of a dense Niigata sand”, Soils and Foundations, JSSMFE, Vol. 24, No. 4, pp. 131-145, 1984.
145.Yoshimi, T., Tokimatsu, K. and Hosaka, Y., “Evaluation of liquefaction resistance of clean sands based on high quality undisturbed samples”, Soils and Foundations, JGS, Vol. 29, No. 11, pp.93-104, 1989.
146.Youd, T. L. and Idriss, I. M., Editors., Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report No. NCEER-97-0022, National Center for Earthquake Engineering Research, State University of New York at Buffalo, December, 1997.
147.Youd, T. L. and Noble, S. K., “Magnitude scaling factors”, Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report No. NCEER-97-0022, National Center for Earthquake Engineering Research, State University of New York at Buffalo, pp.149-165, 1997.
148.Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.C., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe II, K.H., “Liquefaction resistance of soils: summary report from 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, pp.817-833, 2001.
149.Xie, J., “Empirical criteria for sand liquefaction”, Proceedings of 2nd U.S. National Conference on Earthquake Engineering, Stanford University, Aug., 1979.
150.Zhou, S. G., “Evaluation of the liquefaction of sand by static cone penetration test”, Proceedings of 7th World Conference on Earthquake Engineering, held at Istanbul, Turkey, Vol. 3, 1980.
151.Zhou, S. G., “Influence of fines on evaluating liquefaction on sand by SPT”, Proceedings of the International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, MO, Vol. 2, pp. 167-172, 1981.