簡易檢索 / 詳目顯示

研究生: 陳蒼霈
Chen, Tzan-Pei
論文名稱: 燃煤底灰添加碳酸鎂製造玻璃陶瓷結晶行為之研究
指導教授: 黃紀嚴
Huang, J. Y.
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 86
中文關鍵詞: 玻璃陶瓷底灰
外文關鍵詞: glass ceramics, bottom ash
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口的增加與經濟的快速發展,廢棄物之妥善處理與處置已成為世界各國面臨的重要課題。台電燃煤電廠每年有近200萬公噸的煤灰產量,分別為80%的飛灰,及20%的底灰。如何將這大量的廢棄物做好回收及再利用,以期減少煤灰對環境之衝擊,相關各界莫不投注龐大之人力及物力。以民國88年為例,飛灰利用率已高達89.7%。然而相較之下,底灰之再利用卻相當少,僅有6.2%。底灰內所含豐富的化學元素,正是製造玻璃所需要的原料。故本研究以底灰為原料製成玻璃陶瓷,不但可以將廢棄物回收利用,更能舒解電廠煤灰處置之困境,具環保及資源再生之功效。
    本研究所使用之燃煤底灰主成份為SiO2及Al2O3,經添加10~40%重量百分比的MgCO3後,熔製為玻璃(10MG~40MG),以DTA分析得到一玻璃轉移溫度及三至四個結晶放熱峰,玻璃經一階段及二階段的熱處理之後,經X光繞射分析證實,所得到的結晶有α-堇青石(Indialite, 2MgO.2Al2O3.5SiO2) 、鈣長石(Anorthite, CaO.Al2O3.2SiO2)、頑火輝石(Enstatite, MgO.SiO2)、含鐵頑火輝石((Mg, Fe)O.SiO2)、鐵尖晶石(Hercynite, FeO.Al2O3)、白矽石(Crystobalite, SiO2)等相。經過SEM顯微分析,結晶顆粒大小及分佈之控制尚可繼續研究改進。
    此外,以預成核熱處理及DTA分析得知,40MG的最佳成核溫度在780°C附近,最佳成核時間為4小時。40MG經780°C,4小時的預成核熱處理後,長晶活化能由未預成核的449.9 kJ/mol降低為343.7 kJ/mol。
    於基本物理性質方面,添加MgCO3的量愈多,玻璃及玻璃陶瓷的體密度及視比重愈大,而孔隙率及吸水率則愈小。實驗結果顯示,熱處理過後所得到玻璃陶瓷之微硬度均比玻璃高,且經二階段熱處理所得的玻璃陶瓷可獲得比一階段熱處理者更高的微硬度值。

    With the rapidly growing populations and economy, proper disposal of wastes has become an urgent subject confronted by the world. Taipower’s coal-fired power plants generate two million tons of coal ashes annually, of which are 80% fly ash and 20% bottom ash respectively. All units related have invested large labor power and material resources studying how to recover and reuse this large quantity of wastes in order to decrease their impact against environment. For example, the amount utilized of fly ash has reached 89.7% in 1999 while that of bottom ash is only 6.2%. The abundant chemical elements in bottom ashes are just the raw materials of producing glasses. This research takes the bottom ashes of thermal power plants as a major starting raw material to make glass ceramics, which not only reuse and recover the wastes but also easing the disposal of power plant coal ash, having the benefits of environmental protection and resources recycling.
    The major composition of the bottom ash used in this study is SiO2 and Al2O3. After adding 10 to 40% of MgCO3, melt it to glass (10MG~ 40MG). In the DTA analysis the glass shows one glass transition point and three to four crystallization exothermic peaks. After heat treated on the glass and analyzed by X-ray diffraction, it’s crystal phases are indialite (2MgO.2Al2O3.5SiO2), anorthite (CaO.Al2O3.2SiO2), enstatite (MgO.SiO2), ferroan enstatite ((Mg, Fe)O.SiO2), hercynite (FeO.Al2O3), and crystobalite (SiO2).
    SEM micro-structure analysis shows the control of crystal grain size and distribution still leaves room to be desired.
    After a pre-nucleate heat treatment and DTA analysis, the temperature of maximum nucleation rate of 40MG is 780°C and the best time for nucleation is 4 hours. When heated at 780°C for 4 hours, the activation energy for crystal growth lowers to 449.9 kJ/mol from the non-nucleated 343.7 kJ/mol.
    As for the basic physical properties of glasses and glass ceramics, the more MgCO3 added to bottom ash, the higher the bulk density and apparent specific gravity and the lower porosity and water absorption is. Experiment shows the micro hardness of glass ceramics is higher than that of glasses. Also, two stage heat treatment leads to higher micro hardness than that of one stage heat treatment.

    摘要 III Abstract V 總目錄 VII 表目錄 X 圖目錄 XI 第1章 緒論 1 1.1研究背景 1 1.2研究目的 2 1.3前人研究 2 第2章 理論基礎 5 2.1底灰性質及利用 5 2.1.1底灰來源與底灰性質 5 2.1.2國內外底灰利用概況 8 2.2玻璃陶瓷 13 2.2.1玻璃陶瓷簡介 13 2.2.2玻璃陶瓷之製造 15 2.2.3成核劑 17 2.2.4成份系統 17 2.3結晶化過程 21 2.3.1相分離 21 2.3.2成核作用 25 2.3.3結晶化熱處理 25 2.4結晶機構與活化能 30 2.4.1最佳成核溫度 30 2.4.2最佳成核時間 30 2.4.3長晶活化能 30 第3章 實驗方法與步驟 34 3.1實驗材料 34 3.1.1底灰 34 3.1.2 MgCO3 34 3.2實驗流程 34 3.3性質分析 35 3.3.1底灰化學成份分析 35 3.3.2熱差分析(DTA) 37 3.3.3 X光繞射分析(XRD) 38 3.3.4顯微結構分析(SEM) 38 3.3.5體密度、視比重、孔隙率及吸水率之測試 38 3.3.6微硬度測試 39 第4章 結果與討論 40 4.1底灰化學成份 40 4.2熱差分析 42 4.3結晶相分析 46 4.3.1精底灰 46 4.3.2玻璃 47 4.3.3玻璃陶瓷 48 4.4顯微結構觀察 61 4.4.1玻璃 61 4.4.2玻璃陶瓷 61 4.5長晶活化能 70 4.6基本物性測試結果 74 第5章 結論與建議 80 5.1結論 80 5.2建議 81 參考文獻 82

    1 . 李嘉華、郭淑德,“台電底灰性質之探討”,臺電工程月刊,第599期,1998.7.
    2 . 郭淑德,“台灣地區煤灰利用之研發及其應用之調查研究”,台電公司83年度研發專題研究報告,1994。
    3 . 郭淑德,賴正義,劉晶民,“臺電火力電廠固態副產品之資源化歷程與展望”,臺電工程月刊,第576期,85.8。
    4 . 鄭大偉,陳永翔,“焚化灰渣熔融及資源化處理之研究”,國立台北科技大學材料及資源工程研究所碩士論文,民國90年。
    5 . R. Cioffi, P. Pernice, A. Aronne, A. Marotta, “Nucleation and crystal growth in a fly ash derived glass”, J. Mater. Sci. 28 (1993) 6591-6594.
    6 . R. Cioffi, P. Pernice, A. Aronne, M. Catauro, “Glass-Ceramics from Fly ash with Added Li2O”, J. of the European Ceramic Society, 13 (1994) 143-148.
    7 . R. Cioffi, P. Pernice, A. Aronne, M. Catauro, G. Quattroni, “Glass-Ceramics from Fly ash with Added MgO and TiO2”, J. of the European Ceramic Society, 14 (1994) 517-521.
    8 . A. R. Boccaccini, J. Schawohl, H. Kern, B. Schunck, J. M. Rinocon, M. Romero, “Sintered glass ceramics from municipal incinerator fly ash”, Glass Technolgy, 2000, 41 (3) 99-105.
    9 . 苗伯霖,蔣克成,潘昌林,吳秉駿,“台電底灰氯離子含量及再利用途徑之調查研究”,台電工程月刊,第635期,2000.7.
    10 . 汪建民,陶瓷技術手冊(上)(下),中華民國粉末冶金協會,民國83年。
    11 . Luisa Barbieri, Isabella Lancellotti, Tiziano Manfredini, Ignasi Queralt, Jesus Ma, Rincon, Maximina Romero, “Design, obtainment and properties of glasses and glass-ceramics from coal fly ash”, Fuel 78 (1999) 271-276.
    12 . Luisa Barbieri, Anna Maria Ferrari, Isabella Lancellotti, and Cristina Leonelli, “Crystallization of (Na2O-MgO)-CaO-Al2O3-SiO2 Glassy Systems formulated from Waste Products”, J. Am. Ceram. Soc., 83 [10] 2515-20 (2000).
    13 . Luisa Barbieri, Anna Corradi Bonamartini, Isabella Lancellotti, “Alkaline and alkaline-earth silicate glasses and glass-ceramics from municipal and industrial wastes”, Journal of the European Ceramic Society, 20 (2000) 2477-2483.
    14 . A. R. Boccaccini, M. R. Petitmermet, E. Wintermantel, “Glass-ceramics from municipal incinerator fly ash”, Am. Ceram. Soc. Bull., 11 (1997) 75-78.
    15 . G. Scarinci, G. Brusatin, L. Barbieri, A. Corradi, I. Lancellotti, P. Colombo, S. Hreglich, R.Dall’Igna, “Vitification of industrial and natural wastes with production of glass fibres”, Journal of the European Ceramic Society, 20 (2000) 2485-2490.
    16 . J. Ma. Rincon, M. Romero, A. R. boccaccini, “Microstructural characterization of glass and a glass-ceramic obtained from municipal incinerator fly ash”, J. Mater. Sci., 34 (1999) 4413-4423
    17 . R. J. Brook, “Concise encyclopedia of advanced ceramic materials”, Pergamon press, 1991.
    18 . Z. Strnad, “Glass-Ceramics Material”, 1986.
    19 . Allen M. Alper, “Phase diagrams, Materials science and technology”, Academic Press, 1978.
    20 . P. W. McMillan, “Glass-Ceramics”, 1979.
    21 . A. Marotta, A. Buri, F. Branda, “Nucleation in glass and differential thermal analysis”, J. Mater. Sci., 16 (1981) 341-344.
    22 . H. C. Park, S. H. Lee, B. K. Ryu, “Nucleation and crystallization kinetics of CaO-Al2O3-2SiO2 in powdered anorthite glass”, J. Mater. Sci., 31 (1996) 4249-4253.
    23 .方友清、簡朝和,“氧化物添加劑對玻璃-陶瓷之緻密化及結晶動力學的影響”,國立清華大學材料研究所博士論文,民國90年。
    24 . Robert F. Speyer, “Thermal Analysis of Materials”, Dekker, 1993.
    25 . K. Matusita and S. Sakka., J. Non-Cryst. Solids, 38-39 (1980) 741.
    26 . X. J. XU, C. S. Ray and D. E .Day, J. A mer. Ceram. Soc., 74 (1991) 909.
    27 . Y. M. Sung and J. S. Park, “Sintering and crystallization of (SrO.SiO2)-(SrO.Al2O3.2SiO2) glass-ceramics”, J. Mat. Sci., 34, 5803-9 (1999).
    28 . J. A. Augis and J. E. Bennett, J. Therm. Anal. 13 (1978) 283.
    29 . David W. Richerson, “Modern ceramic engineering, properties, processing , and use in design”, Marcel Dekker, 1982.
    30 . 邱標麟,玻璃製造學,復文書局,2002。

    下載圖示 校內:立即公開
    校外:2003-07-14公開
    QR CODE