簡易檢索 / 詳目顯示

研究生: 陳圓蓉
Chen, Yuan-Rong
論文名稱: 混凝土材料受高溫與再水化作用後之音射訊號特徵
Acoustic Emission Signatures of Concrete Materials Subjected to Temperature Elevation and Rehydration
指導教授: 侯琮欽
Hou, Tsung-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 114
中文關鍵詞: 音射檢測法自癒性再水化高溫延燒高斯混合模型
外文關鍵詞: acoustic emission, gaussian mixture model, rehydration, elevated temperature
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   音射檢測法(acoustic emission testing, AET)為一種非破壞檢測,利用試體破壞釋放的彈性波,轉化電子訊號後,紀錄為各項音射參數,此方法可以有效判斷混凝土試體破壞的機制,並依據訊號變化推測混凝土內部孔隙維結構的分布。為使音射感測器貼合試體表面,本研究針對10*10*10cm方形混凝土試體經過四種不同目標溫度(125℃、250℃、400℃與600℃)的高溫延燒後,其殘餘的抗壓強度,再把試體放分別入三種不同再養護條件(高溫水中、常溫水中與常溫常濕),觀察混凝土試體利用本身未水化水泥顆粒進行自癒合的再水化反應,求得混凝土試體經過修補後力學行為的改變。實驗於試體抗壓時同時進行音射訊號收集,除了常見的音射訊號分析方式外,本研究亦使用統計分群模型-高斯混合模型(gaussian mixture model, GMM),對音射訊號提供更客觀的分析方法。
      研究結果顯示:混凝土試體於高溫延燒至400℃時,抗壓強度仍會提升,直到600℃才有明顯下降;高溫水中與常溫水中再養護會造成離子析出,微裂縫產生,使抗壓強度下降;常溫常濕環境再養護由於水分自然的散失,導致試體些微乾縮,亦造成抗壓強度下降。音射參數中的累積撞擊次數與能量的歷時變化,其訊號量隨著延燒溫度提升而增加,且經過再養護的試體其累積撞擊次數與能量皆比直接抗壓低,代表試體微裂縫擴張,訊號能量較小。GMM分群分析可以有效將音射訊號分成張力破壞與剪力破壞,並發現GMM分析參數中的張力權重於高溫延燒至400℃時變化不大,於600℃才有明顯下降;不論再養護條件為何,張力權重的變化皆相似,且張力權重皆大於0.5,推測試體抗壓產生的訊號有一半以上皆為張力裂縫。

    The purpose of this study is to investigate the acoustic emission signatures and compressive strength after concrete specimens subjecting to temperature elevation and rehydration. High temperature as in fire would make concrete structures cracking, spalling and reduce the strength causing irreversible damage. Concrete materials have the ability of self-healing when the unhydrated cement particles contact with water motivating the rehydrating process and producing more C-S-H gel to fill the cracks. The acoustic emission (AE) testing is one of the non-destructive test method, it can detect the AE signal of materials during loading and distinguish the failure mode of the material. The statistical analysis- gaussian mixture model can provide smooth approximations to fit the AE data distribution, then divide the AE data into two categories: tensile and shear.
    The results showed that the compressive strength of concrete specimens increased when the temperature rising to 400℃, and decreased at 600℃. Because of the ionic concentration differences in water and shrinkage in air-dry condition, the compressive strength even lower at the temperature125℃, 250℃ and 400℃. The amount of AE signals increased with rising the temperature, but less at the rehydration specimens due to the micro-cracks propagation. The gaussian mixture model gave every AE signals tensile and shear probability which provided an objective method to discriminate the AE data. The tensile weights of the gaussian mixture model at 600℃ were lower than other temperatures which meant that 600℃ causes specimens generating more sliding failure.

    摘要 I Abstract II 致謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1.1 研究動機 1 1.2 研究方法與流程 2 1.3 研究流程 3 第二章 文獻回顧 5 2.1 音射法檢測 5 2.1.1 音射法基本原理與技術 5 2.1.2 音射波形與參數 7 2.1.3 參數法與訊號法 10 2.1.4 訊號法分析裂縫模式 11 2.1.5 參數法分析裂縫模式 14 2.2 高斯混合模型應用 16 2.2.1 高斯混合模型發展背景 16 2.2.2 高斯混合模型使用於音射訊號分析 18 2.3 高溫延燒對混凝土影響 21 2.3.1 微結構變化 21 2.3.2 外觀變化 23 2.3.3 強度變化 24 2.4 混凝土的自癒性 27 2.4.1 起源 27 2.4.2 原生型自癒合 28 2.4.3 膠囊自癒合 32 2.4.4 導管自癒合 33 第三章 試驗內容與規劃 34 3.1 試驗材料 34 3.2 試驗過程 37 3.3 高溫延燒試驗 39 3.4 二次養護 42 3.5 音射軟體設定 43 3.6 抗壓試驗與音射法檢測 49 3.7 高斯混合模型數據分析 51 第四章 試驗結果 56 4.1 抗壓強度變化 56 4.2 音射參數分析 61 4.2.1 累積撞擊次數 61 4.2.2 訊號能量 65 4.2.3 裂縫模式分析 68 4.3 GMM分析 73 4.3.1 傳統分析與GMM分析比較 73 4.3.2 GMM裂縫分析 75 第五章 結論與建議 83 5.1 結論 83 5.2 建議 85 參考文獻 86 附錄A 加載與累績撞擊訊號歷時圖 91 附錄B 加載與能量歷時圖 97 附錄C 裂縫模式分析 103 附錄D 音射數據處理方法 109 附錄E 抗壓試體系統勁度 112

    1. Grosse, C.U., Introduction, in Acoustic Emission Testing: Basics for Research - Applications in Civil Engineering, C. Grosse and M. Ohtsu, Editors. 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 3-10.
    2. Ohtsu, M., Sensor and Instrument, in Acoustic Emission Testing: Basics for Research - Applications in Civil Engineering, C. Grosse and M. Ohtsu, Editors. 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 19-40.
    3. Malhotra, V.M. and N.J. Carino, Handbook on Nondestructive Testing of Concrete. 2004: CRC Press.
    4. Hu, S., J. Lu, and F. Xiao, Evaluation of concrete fracture procedure based on acoustic emission parameters. Construction and Building Materials, 2013. 47: p. 1249-1256.
    5. Shiotani, T., Parameter Analysis, in Acoustic Emission Testing: Basics for Research - Applications in Civil Engineering, C. Grosse and M. Ohtsu, Editors. 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 41-51.
    6. Huang, M., L. Jiang, P. Liaw, C. Brooks, R. Seelev, and D. Klarstrom, Using acoustic emission in fatigue and fracture materials research. JOM, 1998. 50: p. 1-12.
    7. Grosse, C.U. and L.M. Linzer, Signal-Based AE Analysis, in Acoustic Emission Testing: Basics for Research - Applications in Civil Engineering, C. Grosse and M. Ohtsu, Editors. 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 53-99.
    8. Kaiser, J., Erkenntnisse und Folgerungen aus der Messung von Geräuschen bei Zugbeanspruchung von metallischen Werkstoffen. Archiv für das Eisenhüttenwesen, 1953. 24(1-2): p. 43-45.
    9. Fowler, T.J., Experience with acoustic emission monitoring of chemical Process industry vessels. 1986. Progress in AE III: p. 150-162.
    10. 2421, N., Recommended practice for in situ monitoring of concrete structures by acoustic emission. JSNID, Tokyo, 2000.
    11. Aldahdooh, M.A.A. and N. Muhamad Bunnori, Crack classification in reinforced concrete beams with varying thicknesses by mean of acoustic emission signal features. Construction and Building Materials, 2013. 45: p. 282-288.
    12. Ohno, K. and M. Ohtsu, Crack classification in concrete based on acoustic emission. Construction and Building Materials, 2010. 24(12): p. 2339-2346.
    13. Ohtsu, M., Acoustic emission theory for moment tensor analysis. Research in Nondestructive Evaluation, 1995. 6(3): p. 169-184.
    14. Reynolds, D.A., A Gaussian Mixture Modeling Approach to Text-Independent Speaker Identification. PhD thesis, 1992.
    15. Reynolds, D.A. and R.C. Rose, Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Transactions on Speech and Audio Processing, 1995. 3(1): p. 72-83.
    16. Richiardi, J. and A. Drygajlo, Gaussian Mixture Models for on-line signature verification, in Proceedings of the 2003 ACM SIGMM workshop on Biometrics methods and applications. 2003, ACM: Berkley, California. p. 115-122.
    17. Farnoosh, R., G. Yari, and B. Zarpak, Image Segmentation using Gaussian Mixture Models. International Journal of Engineering Science (IUST), 2008. 19(1-2): p. 29-32.
    18. Giri, D., U. Rajendra Acharya, R.J. Martis, S. Vinitha Sree, T.-C. Lim, T. Ahamed, and J.S. Suri, Automated diagnosis of Coronary Artery Disease affected patients using LDA, PCA, ICA and Discrete Wavelet Transform. Knowledge-Based Systems, 2013. 37: p. 274-282.
    19. Terejanu, G., P. Singla, T. Singh, and P.D. Scott, Uncertainty Propagation for Nonlinear Dynamic Systems Using Gaussian Mixture Models. Journal of Guidance, Control, and Dynamics, 2008. 31(6): p. 1623-1633.
    20. Farhidzadeh, A., S. Salamone, and P. Singla, A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures. Journal of Intelligent Material Systems and Structures, 2013. 24(14): p. 1722-1735.
    21. Prem, P.R. and A.R. Murthy, Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending. Applied Acoustics, 2017. 117: p. 28-38.
    22. Georgali, B. and P.E. Tsakiridis, Microstructure of fire-damaged concrete. A case study. Cement and Concrete Composites, 2005. 27(2): p. 255-259.
    23. Hager, I., Behaviour of cement concrete at high temperature. 2013. 61(1): p. 145.
    24. Arioz, O., Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 2007. 42(8): p. 516-522.
    25. Hager, I., Colour Change in Heated Concrete. Fire Technology, 2014. 50(4): p. 945-958.
    26. Chen, B., C. Li, and L. Chen, Experimental study of mechanical properties of normal-strength concrete exposed to high temperatures at an early age. Fire Safety Journal, 2009. 44(7): p. 997-1002.
    27. Guiming, W., Z. Chao, Z. Bin, L. Qiu, and S. Zhonghe, Study on the high-temperature behavior and rehydration characteristics of hardened cement paste. Fire and Materials, 2015. 39(8): p. 741-750.
    28. Hearn, N., Self-sealing, autogenous healing and continued hydration: What is the difference? Materials and Structures, 1998. 31(8): p. 563.
    29. Li, V.C. and E. Herbert, Robust Self-Healing Concrete for Sustainable Infrastructure. Journal of Advanced Concrete Technology, 2012. 10(6): p. 207-218.
    30. Schlangen, E., Fracture mechanics. CT5146 Lecture Notes. In: Hua X. Self-healing of Engineered Cementitious Composites (ECC) in concrete repair system. . Master thesis, 2010.
    31. Van Tittelboom, K. and N. De Belie, Self-Healing in Cementitious Materials—A Review. Materials, 2013. 6(6): p. 2182-2217.
    32. Edvardsen, C., Water permeability and autogenous healing of cracks in concrete. ACI Materials Journal, 1999. 96(4): p. 448-454.
    33. Reinhardt, H.-W. and M. Jooss, Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cement and Concrete Research, 2003. 33(7): p. 981-985.
    34. Homma, D., H. Mihashi, and T. Nishiwaki, Self-Healing Capability of Fibre Reinforced Cementitious Composites. Journal of Advanced Concrete Technology, 2009. 7(2): p. 217-228.
    35. Poon, C.-S., S. Azhar, M. Anson, and Y.-L. Wong, Strength and durability recovery of fire-damaged concrete after post-fire-curing. Cement and Concrete Research, 2001. 31(9): p. 1307-1318.
    36. Lee, H.X.D., H.S. Wong, and N.R. Buenfeld, Potential of superabsorbent polymer for self-sealing cracks in concrete. Advances in Applied Ceramics, 2010. 109(5): p. 296-302.
    37. Termkhajornkit, P., T. Nawa, Y. Yamashiro, and T. Saito, Self-healing ability of fly ash–cement systems. Cement and Concrete Composites, 2009. 31(3): p. 195-203.
    38. Jonkers, H.M., Bacteria-based self-healing concrete. Heron, 2011. 56: p. 1-12.
    39. Joseph, C., A.D. Jefferson, B. Isaacs, R. Lark, and D. Gardner, Experimental investigation of adhesive-based self-healing of cementitious materials. Magazine of Concrete Research, 2010. 62(11): p. 831-843.
    40. 賀天行, 音射與電阻抗法檢測鋼筋混凝土高溫後之殘餘握裹 國立成功大學土木工程研究所碩士論文 2016.
    41. 北京聲華興業科技有限公司, Soundwel聲發射產品手冊--SAEU2S聲發射系統. 2012.
    42. 鄭峯昇, 音射法於自癒性混凝土損傷評估與破壞模式之探討. 國立成功大學土木工程研究所碩士論文 2014.
    43. Hollis, G.C., Non-Invasive Acoustic Emission Testing of Compressed Trabecular Bone and Porous Ceramics using Seismic Analysis Techniques. Master thesis, 2004.
    44. Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response. 2015, American Society for Testing and Materials.
    45. Kjellsen, K.O., R.J. Detwiler, and O.E. Gjørv, Development of microstructures in plain cement pastes hydrated at different temperatures. Cement and Concrete Research, 1991. 21(1): p. 179-189.
    46. Kendall, K., A.J. Howard, J.D. Birchall, P.L. Pratt, B.A. Proctor, and S.A. Jefferis, The Relation between Porosity, Microstructure and Strength, and the Approach to Advanced Cement-Based Materials [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1983. 310(1511): p. 139-153.

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE