| 研究生: |
魏宇君 Wei, Yu-Chun |
|---|---|
| 論文名稱: |
使用可調頻率與振幅驅動法於線性超音波馬達位置控制之研究 Study of the Position Control of Linear Ultrasonic Motor Using the Variable Frequency and Amplitude Drive |
| 指導教授: |
陳添智
Chen, Tien-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 電壓控制增益 、電壓控制頻率 、超音波馬達 |
| 外文關鍵詞: | voltage-controlled gain, voltage-controlled oscillator, Ultrasonic Motor |
| 相關次數: | 點閱:94 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電致動器已經廣泛的被應用在伺服系統,例如:旋轉式行波超音波馬達和新式駐波型線性超音波馬達…等。直接驅動形式的駐波型線性超音波馬達在工業界、醫藥界、消費者、機器人學、汽車工業吸引了高度的關注。
傳統線性超音波馬達的行進速度和移動位置,可經由輸入的兩相弦波電壓的頻率、相位差和振幅調整。然而,傳統線性超音波馬達的兩相弦波輸出電壓,在相同的切換頻率下是不平衡的。因此,對於傳統線性超音波馬達,好的動態響應很難去得到。因為,駐波型線性超音波馬達只需提供單相的弦波電壓,所以在實際的應用上,沒有兩相弦波電壓不平衡的缺點,並擁有優異的性能。
新式駐波型線性超音波馬達驅動電路,結合了兩種控制電路,去調整驅動源的頻率和振幅,且擁有高性能和優良的效率,並且以四級電路模組結合,依序為電壓控制頻率電路(VCO)、電壓控制增益放大器(VCA)、功率放大器和變壓器。
本論文中的實驗硬體架構,以低價位的數位訊號處理器(DSP)和分離式的光學尺去實現。此實驗硬體架構不僅可降低硬體的大小和價錢,並擁有優異的定位能力藉由回授訊號去量測相對位置座標。根據實驗結果,新型的驅動電路配合駐波型線性超音波馬達擁有比傳統驅動電路更彈性的控制範圍和更有變化性的控制條件。
The piezoelectric actuators have been applied popularly for servo systems, such as the Rotary Traveling-Wave LUSM and the standing-wave Linear Ultrasonic Motor (LUSM). The standing-wave LUSM attracts special interest as direct drive type actuator in industry, medical science, consumers, robotics and automotive application.
The speed and position of the conventional LUSM can be manipulated by controlling the frequency, the difference of phases and the voltage amplitude of the sinusoidal voltage waveforms. However, the two-phase sinusoid output voltages of the conventional LUSM are unbalanced under the same switching frequency. Therefore, a good dynamic performance of the conventional LUSM is difficult to be obtained due to the unbalanced two-phase voltages. Because the standing-wave LUSM could be supplied a single phase sinusoidal wave, there is an outstanding performance in practical application without the demerit of the unbalanced two-phase voltages.
The driving circuit for the standing-wave LUSM combines the two control circuits to regulate the frequency and the amplitude of the driving voltage. The driving circuit is composed of four stages: voltage-controlled oscillator circuit, voltage-controlled gain amplifier circuit, power amplifier and transformer.
The hardware of experiment system is implemented with a low-cost digital signal processor based microcontroller and the separate-type linear scale system. The experiment system reduces the size and cost of hardware and measures the relative position coordinate by feedback signals. According to the experiment results, the driving circuit for the standing-wave LUSM gives more flexible control range and more variable control condition than the other driving circuits.
References
[1] A. Basak and F. J. Anayi, “A DC Linear Motor with a Square Armature,” IEEE Trans. On. Energy Conversion, Vol. 10, No. 3, pp. 462-469, September 1995.
[2] Y. B. Bang and K. M. Lee, “Linear Motor for Ejector Mechanism,” IEEE Electric Machines and Drives Conference, Vol. 3, No. 1-4, pp. 1702-1708, June 2003.
[3] E. Bassi, F. Benzi and F. Moro, “Force Disturbance Compensation for an A.C. Brushless Linear Motor,” IEEE International Symposium on Industrial Electronics, Vol. 3, pp. 1350-1354, 1999.
[4] C. K. Lim, S. He, I. M. Chen and S. H. Yeo, “A Piezo-On Slider Type Linear Ultrasonic Motor for the Application of Positioning Stages,” IEEE Proc. International Conference on Advanced Intelligent Mechatronics, pp. 103-108, September 19-23, 1999.
[5] M. Kurosawa and S. Ueha, “High Speed Ultrasonic Linear Motor with High Transmission Efficiency,” Ultrasonics, Vol. 27, pp. 39-44, 1989.
[6] S. Wolfgang, “Ultrasonic Traveling Wave Linear Motor with Improved Efficiency,” SPIE Proc. Smart Structure and Materia, Vol. 2717, pp. 554-564, 1996.
[7] M. Kurosawa, and K. Nishita, “Hybrid Transducer Type Ultrasonic Linear Motor Using Flexural Vibrator,” J. Acoust. Soc. Am., Vol. 77, pp. 1431- 1435, 1985.
[8] M. Kurosawa, K. Nishita and S. Ueha, “Hybrid Transducer-Type Motor with Longitudinal Vibrator,” Japanese Journal of Applied Physics, Suppl. 28- 1,
pp. 158-160, 1989.
[9] M. Kurosawa and K. Nishita, “Hybrid Transducer Type Ultrasonic Linear Motor Using Flexural Vibrator,” Japanese Journal of Applied Physics, Vol. 30, pp. 209-211, 1991.
[10] T. Hemse1 and J. Wallaschek, “Ultrasonic Motors for Linear Position Task in Automobile,” 30th International Symposium on Automotive Technology & Automation, pp. 631-637, 1997.
[11] S. Shi, W. Chen and J. Liu, “A High Speed Ultrasonic Linear Motor Using Longitudinal and Bending Multimode Bolt-Clamped Langevin Type Transducer,” IEEE International Conference on Mechatronics and Automation, pp. 612-617, June 25-28, 2006.
[12] T. Takano and Y. Tomikawa, “Linearly Moving Ultrasonic Motor Using a Multi-Mode Vibrator,” Japanese Journal of Applied Physics, Vol. 28,
Suppl. 28-1, pp. 164-166, 1989.
[13] Y. Tomikawa, T. Takano and H. Umeda, “Thin Rotary and Linear Ultrasonic Motors Using a Double-Mode Piezoelectric Vibrator of the First Longitudinal and Second Bending Modes,” Japanese Journal Applied Physics, Vol. 3l, pp. 3073-3076, 1992.
[14] F. J. Lin, R. J. Wai and K. K. Shyu, “Recurrent Fuzzy Neural Network Control for Piezoelectric Ceramic Linear Ultrasonic Motor Drive,” IEEE Trans. On Ultrasonics, Ferroelectrics and Frequency Control, Vol. 48, No. 4, pp. 900-913, July 2001.
[15] F. J. Lin, R. Y. Duan, R. J. Wai and C. M. Hong, “LLCC Resonant Inverter for Piezoelectric Ultrasonic Motor Drive,” IEE Proc. Electric Power Applications, Vol. 144, No. 5, pp. 479-487, September 1999.
[16] F. J. Lin, R. J. Wai and M. P. Chen, “Wavelet Neural Network Control for Linear Ultrasonic Motor Drive via Adaptive Sliding-Mode Technique,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 50, No. 6, pp. 686-698, June 2003.
[17] Y. F. Peng, C. F. Hsu, C. M. Lin and M. H. Lin, “Intelligent Tracking Control for Linear Ultrasonic Motor Using Control Technique,” IEEE International Conference on Industrial Technology, pp. 1057-1062, December 2005.
[18] T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors, Clarendon Press, Oxford, 1993.
[19] H. V. Barth, “Ultrasonic Driven Motor,” IBM Technological Disclosure Bulletin 16, No. 7, pp. 2263, December 1973.
[20] G.. Bal and E. Bekiroglu, “Experimental Examination of Speed Control Methods for a Traveling Wave Ultrasonic Motor,” 3rd International Advanced Technologies Symposium, pp. 415-423, August 2003.
[21] N. El Ghouti, Hybrid Modeling of a Traveling Wave Piezoelectric Motor, PhD Thesis, Dep. of Control Engineering, Aalborg University, Denmark, 2000.
[22] H. Sato, F. Arai, H. Ishihard, T. Fukuda, H. Iutatu and K. Itoigawa, “New PZT Actuator Using Piezoelectric Thin Film on Parallel Plate Structure,” IEEE International Symposium on Micromechatronics and Human Science, 1999, pp. 79-84, October 1997.
[23] A. E. Glazounov, S. Wang, Q. M. Zhang and C. Kim, “Piezoelectric Stepper Motor with Direct Coupling Mechanism to Achieve High Efficiency and Precise Control of Motion,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 47, No. 4, July 2000.
[24] Q. M. Zhang and A. Glazounov, “Torsional Inchworm Ultrasonic Piezomotor Combining Continuous Rotation with Precise Control over Angular Positions and High Torque Output,” IEEE Proc. Ultrasonics, Vol. 1, pp. 661-665, October 1999.
[25] Data Sheet of ICL8038, Intersil User Manual, 1998.
[26] Data Sheet of VCA810, Intersil User Manual, 2006.
[27] K. Ogata, Modern Control Engineering, Prentice-Hall Fourth Edition, 2002.