| 研究生: |
蔡孟晉 Tsai, Meng-Chin |
|---|---|
| 論文名稱: |
氧化亞氮/煤油同軸噴注器之噴霧特性研究 A Study on the Spray Characteristics of Nitrous Oxide/Kerosene Coaxial Injector |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 同軸噴注器 、氧化亞氮 、煤油 、閃蒸霧化 、噴霧特性 |
| 外文關鍵詞: | Coaxial injector, Nitrous oxide, Kerosene, Flash boiling atomization, Spray characteristics |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液態雙基推進火箭具有高燃燒效率、高比衝值、可重複點火與推力可控的特性,在國外已經發展許久,並且都有豐富的研究成果,因此發展液態雙推進火箭勢在必行也是目前相當重要的課題。國內目前對於液態雙推火箭的研究不多,由於液態氧需要克服低溫儲存的問題,還無法直接使用,因此想藉由先操作氧化亞氮來當作過渡的氧化劑,以提升對液態火箭的掌握度。氧化亞氮為高蒸氣壓的氧化劑,具有獨特的熱物理特性造成的閃蒸霧化,雖然與液態氧的熱力性質還是稍有差異,但優點是在常溫下就可以操作,大幅減少研究的門檻。而同軸式噴注器的特點為用在異相推進劑(液氣相),因此想藉由氧化亞氮本身的熱物理特性搭配同軸式噴注器將煤油霧化。本研究目的在於探討以液態氧化亞氮/煤油作為雙推進劑,利用液態氧化亞氮本身的熱物理性質搭配同軸噴注器促使煤油破碎並混合,藉由冷流實驗觀察,整理及比較氧化亞氮噴注與混合噴注行為,以及孔數與孔距對於噴霧的影響來作為後續熱流實驗的基礎。
而從單一氧化亞氮的實驗噴霧都比經驗公式預估的略小,但噴霧寬度的趨勢接近,而由質量守恆定律計算的不同橫截面面積下的空間密度證明氧化亞氮在噴注不到1mm的位置就大部分已經汽化成氧化亞氮氣體,有助於與中心燃料的混合。無論4孔或6孔隨著孔距的增加,混合後的液體核心長度會越來越長,而混合的中心燃料擴散角度會越來越小;在相同孔距下,6孔的核心長度都比4孔的來的短,而噴霧角度6孔的都比4孔的來的大。綜合陰影法與PLIF的混合噴霧並計算O/F ratio的範圍得知,孔距與孔數都會影響O/F ratio的範圍。在無論4孔或6孔在相同與噴注器的距離中,隨著孔距的增加O/F ratio所包含的範圍越小;在相同孔距的情況下,6孔的實驗結果都比4孔所包含的O/F ratio範圍來的大。混合噴霧在4_4、4_5與6_5實驗中的O/F ratio範圍差異不大,推測氧化亞氮影響中心燃料噴霧如果脫離氧化亞氮的膨脹區,那麼混合效果有限。
Liquid bipropellant rockets have high combustion efficiency, high specific impulse, re-ignition capability, and controllable thrust. While these technologies are well-developed internationally, there is limited domestic research due to the challenges of cryogenic storage of liquid oxygen. On the other hand, nitrous oxide has similar thermodynamic characteristics with somewhat mild oxidation performance and can be operated in room temperature without cryogenic cooling. Therefore, nitrous oxide is considered as a suitable oxidizer candidate prior to transition to liquid oxygen to improve understanding of liquid rockets. Nitrous oxide, a high vapor pressure oxidizer, offers the advantage of operating at room temperature, reducing research barriers. The study aims to use nitrous oxide’s thermal properties with a coaxial injector to atomize kerosene. Cold flow experiments observe the effects of injector hole number and spacing on spray, forming a basis for future hot flow experiments. Experiments with nitrous oxide show spray widths slightly smaller than empirical predictions but with similar trends. Mass conservation calculations reveal that nitrous oxide vaporizes mostly within 1mm of injection, aiding central fuel mixing. Both 4-hole and 6-hole configurations show that increased hole spacing lengthens the mixed liquid core and narrows the central fuel diffusion angle. At the same hole spacing, the 6-hole configuration produces a shorter core length and larger spray angle than the 4-hole configuration. Shadowgraph and PLIF mixing sprays, along with O/F ratio calculations, indicate that hole spacing, and number affect the O/F ratio range. Increased hole spacing narrows the O/F ratio range, while the 6-hole configuration covers a broader range than the 4-hole configuration. The O/F ratio range in the 4_4, 4_5, and 6_5 experiments show minor differences, suggesting that nitrous oxide's influence on the central fuel spray is limited if it extends beyond the nitrous oxide expansion region.
[1] D. J. Forliti, I. A. Leyva, D. G. Talley, J. I. Rodriguez, S. Teshome, J. L. Wegener, M. Roa, and A. R. Karagozian, ''Forced and Unforced Shear Coaxial Mixing and Combustion at Subcritical and Supercritical Pressures,'' in High-Pressure Flows for Propulsion Applications, American Institute of Aeronautics and Astronautics, Inc., Josette Bellan, Ed. pp. 233–279, 2020.
[2] M. Long, V. Bazarov, and W. Anderson, "Main chamber injectors for advanced hydrocarbon booster engines." 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, pp. 4599. JPC, Huntsville, AL, July 20-23, 2003.
[3] B. Yang, F. Cuoco, and M. Oschwald, “Atomization and Flames in LOX/H2- and LOx/CH4- Spray Combustion,” Journal of Propulsion and Power, vol. 23, no. 4, pp. 763-771, 2007.
[4] J. Jeon, M. Hong, Y.-M. Han, and S. Y. Lee, “Experimental study on spray characteristics of gas-centered swirl coaxial injectors,” J. Fluids Eng. vol.133, no. 12, pp. 121-303, 2011.
[5] L. Xuan, L. Tian, H. Jinli, Z. Shaohua, and X. Xu, "The preliminary study of oxygen-centered kerosene-swirl coaxial injector." 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, pp. 3587, Cleveland, OH, July 28-30, 2014.
[6] D. Kim, G. Lee, and J. Koo, “Combustion Characteristics of a Coaxial Porous Injector,” Journal of Propulsion and Power, vol. 30, no. 6, pp. 1620-1627, 2014.
[7] J. C. Lasheras, and E. J. Hopfinger, “Liquid Jet Instability And Atomization In A Coaxial Gas Stream,” Annual review of fluid mechanics, vol. 32, pp. 275-308, 2000.
[8] N. Ko, and A. Kwan, “The initial region of subsonic coaxial jets,” Journal of fluid mechanics, vol. 73, no. 2, pp. 305-332, 1976.
[9] D. W. Davis, and B. Chehroudi, “Measurements in an acoustically driven coaxial jet under sub-, near-, and supercritical conditions,” Journal of Propulsion and Power, vol. 23, no. 2, pp. 364-374, 2007.
[10] T. Bar-Kohany, and M. Levy, “State of the Art Review of Flash-Boiling Atomization,” Atomization and Sprays, vol. 26, no. 12, pp. 1259-1305, 2016.
[11] B. S. Waxman, “An investigation of injectors for use with high vapor pressure propellants with applications to hybrid rockets,” Stanford University, 2014.
[12] Z. Song, Y. Mei, X. Zhu, J. Ma, X. Pan, and J. Jiang, “A novel method to characterize morphological dynamics and determine flashing jet regimes,” International Journal of Multiphase Flow, vol. 136, pp. 103-552, 2021.
[13] G. Polanco, A. E. Holdo, and G. Munday, “General review of flashing jet studies,” J Hazard Mater, vol. 173, no. 1-3, pp. 2-18, Jan 15, 2010.
[14] math24.net. "Van der Waals Equation," May 3, 2024; https://math24.net/van-der-waals-equation.html.
[15] X. Li, S. Wang, S. Yang, S. Qiu, Z. Sun, D. L. S. Hung, and M. Xu, “A review on the recent advances of flash boiling atomization and combustion applications,” Progress in Energy and Combustion Science, vol. 100, pp. 101-119, 2024.
[16] X. Li, Q. Xu, S. Qiu, S. Wang, D. Hung, and M. Xu, “Investigations on the impact of phase change on single plume flash boiling radial expansion and drop-sizing characteristics,” Applied Thermal Engineering, vol. 202, pp. 117-911, 2022.
[17] K. S. Varde, “Spray cone angle and its correlation in a high pressure fuel spray,” The Canadian journal of chemical engineering, vol. 63, no. 2, pp. 183-187, 1985.
[18] R. D. Reitz, “Atomization and other breakup regimes of a liquid jet,” Princeton University, 1978.
[19] E. M. Peter, A. Takimoto, and Y. Hayashi, “Flashing and shattering phenomena of superheated liquid jets,” JSME International Journal Series B Fluids and Thermal Engineering, vol. 37, no. 2,pp. 313-321, 1994.
[20] H. Guo, B. Wang, Y. Li, H. Xu, and Z. Wu, “Characterizing external flashing jet from single-hole GDI injector,” International Journal of Heat and Mass Transfer, vol. 121, pp. 924-932, 2018.
[21] B. Susanta, P. R. Suresh, K. Srinivasan, and S. K. Das, “Effect of upstream developing length on the flow field of twin pipe jets,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 222, no. 6, pp. 773-782, 2008.
[22] T. Palacz, and J. Cieślik, “Experimental Study on the Mass Flow Rate of the Self-Pressurizing Propellants in the Rocket Injector,” Aerospace, vol. 8, no. 11, 2021.
[23] 王順志 (2010)。簡易紋影攝影觀測技術之研發,勞動部及職業安全衛生研究所,行政院勞工委員會勞工安全衛生研究所,台灣。
[24] S. DeSouza, and C. Segal, ''Supercritical Coaxial Jet Disintegration,'' in High-Pressure Flows for Propulsion Applications, American Institute of Aeronautics and Astronautics, Inc., Josette Bellan, Ed. pp. 157-181, 2020.
[25] 蔡馨慧 (2023)。氧化亞氮閃蒸噴霧型態和噴霧特性的探討,碩士論文,國立成功大學航空太空工程研究所,台灣。
[26] National Institute of Standards and Technology, NIST Standard Reference Database Number 69, 2023.
[27] D. Salgues, A.-G. Mouis, S.-Y. Lee, D. Kalitan, S. Pal, and R. Santoro, “Shear and Swirl Coaxial Injector Studies of LOX_GCH4 Rocket combustion using non-intrusive laser diagnostics,” 44th AIAA Aerospace Sciences Meeting and Exhibit, pp. 757, Reno, Nevada, January 9-12, 2006.
[28] U. Brackmann, Lambdachrome Laser Dyes: Data Sheets: Lambda Physik GmbH, Göttingen, 1997.
校內:2029-08-08公開