| 研究生: |
游閏喬 Yu, Jun-Chiao |
|---|---|
| 論文名稱: |
磁電彈複材疊層板之偶合邊界元素設計 Coupled Stretching-Bending Boundary Element Design for Magneto-Electro-Elastic Composite Laminates |
| 指導教授: |
胡潛濱
Hwu, Chyan-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 磁電彈材料 、延伸類史磋公式 、邊界元素法 、伸張彎曲偶合 、複材疊層板 |
| 外文關鍵詞: | magneto-electro-elastic material, extended Stroh-like formalism, boundary element method, coupled-stretching-bending, composite laminates plate |
| 相關次數: | 點閱:169 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
偶合異向性彈性力學的延伸類史磋公式,可以利用矩陣維度擴充的便利與規律性,將原先僅能用於彈性材料,延伸應用到壓電材料與磁電彈材料皆能同時使用的通解,接著利用邊界元素法,並找出磁電彈材料無限板的基本解,使彈性、壓電與磁電彈材料都能使用相同基本解來處理無限板的問題,而不需要重新尋找各別材料的基本解。由於多數商業軟體僅能處理彈性複材疊層板的偶合問題,藉由擴充完之方程式編寫進本師門研發之異向性彈性力學分析軟體AEPH中,進而讓程式能利用邊界元素法來處理磁電彈複材疊層板與偶合相關的問題。
最後利用商業軟體ANSYS、史磋公式解析解法及二維邊界元素法,分別處理對稱/非對稱彈性、壓電和磁電彈複材疊層板受軸向均佈拉伸或均佈面外彎矩,經由比對與分析其物理特性,來證明本方法的正確性。
On the basis of the convenient and regular features that extended Stroh-like formalism for coupled-stretching-bending anisotropic elasticity can be extended from the elastic material to the piezoelectric and magneto-electro-elastic materials by expanding the related matrix dimension. Through the boundary element method, the fundamental solution for the magneto-electro-elastic material infinite plate can be found, the elastic, piezoelectric and magneto-electro-elastic materials can also employ the same fundamental solution without finding solutions individually at the same time. Because of the most commercial software only can solve elastic composite laminates coupled-stretching-bending problem, our research group develop the structure engineering analysis software, AEPH, which can apply boundary element method to solve the magneto-electro-elastic material coupled-stretching-bending problem. To verify the correctness of this method, the elastic, piezoelectric and magneto-electro-elastic symmetric/unsymmetric plate under the axial distributed tension or out of plane bending, are presented and compared with the commercial software, ANSYS, Stroh analytical solution and two dimension boundary element method.
[1] Green, A., “A note on stress systems in aelotropic materials,” Philosophical Magazine, Vol. 34, pp. 416-418, 1943.
[2] Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C., “Boundary Element Techniques,” Springer-Verlag, New York, 1984.
[3] Sokolnikoff, I.S., Mathematical Theory of Elasticity. McGraw Hill, 2nd Edition, 1956.
[4] Hwu, C., “Boundary Integral Equations for General Laminated Plates with Coupled Stretching-Bending Deformation,” Proceedings of the Royal Society, Series A, Vol.466, pp.1027-1054, 2010.
[5] Hwu, C., “Boundary Element Formulation for the Coupled Stretching-Bending Analysis of Thin Laminated Plates,” Engineering Analysis with Boundary Elements, Vol. 36, pp. 1027-1039, 2012.
[6] Hwu, C., “Green's Function for the Composite Laminates with Bending Extension Coupling,” Composite Structures, Vol. 63, pp. 283-292, 2004
[7] Eshelby, J.D., Read, W.T. and Shockley, W., “Anisotropic Elasticity with Applications to Dislocation Theory,” Acta Metallurgica, Vol. 1, pp. 251–259, 1953.
[8] Stroh, A.N., “Dislocations and Cracks in Anisotropic Elasticity,” Philosophical Magazine, Vol. 7, pp. 625–646, 1958.
[9] Stroh, A.N., “Steady State Problems in Anisotropic Elasticity,” Journal of Mathematical Physics, Vol. 41, pp. 77–103, 1962.
[10] Ting, T.C.T., Anisotropic Elasticity: Theory and Applications, Oxford Science Publications, New York, 1996.
[11] Hwu, C., “Stroh-Like Formalism for the Coupled Stretching-Bending Analysis of Composite Laminates,” International Journal of Solids and Structures, Vol. 40, No.13-14, pp 3681–3705, 2003.
[12] Hwu, C. and Hsieh, M.C., “Extended Stroh-Like Formalism for the Electro-Elastic Composite Laminates and Its Applications to Hole Problems,” Smart Materials and Structures, Vol. 14, pp. 56-68, 2005.
[13] Ugural, A.C, Stresses In Plate and Shells. WCB/McGraw-Hill, 2nd Edition, 1999.
[14] Hwu, C., “Anisotropic Elastic Plates,” Springer, New York, 2010.
[15] Hsieh, M.C. and Hwu, C., “Extended Stroh-Like Formalism for Magneto-Eletro-Elastic Composite Laminates,” International Conference on Computational Mesomechanics associated with Development and Fabrication of Use-Specific Materials, Tokyo, Japan, pp.325-332, 2003.
[16] Hwu, C. and Yen, W.J., “Green’s Functions of Two-Dimensional Anisotropic Plates Containing an Elliptic Hole,” Int. J. Solids and Structures, Vol. 27, No.13, pp. 1705-1719, 1991.
[17] Yin, W.L., “General Solutions of Anisotropic Laminated Plates,” ASME Journal of Applied Mechanics, Vol. 70, No. 4, pp. 496–504, 2003.
[18] Yin, W.L., “Structures and Properties of the Solution Space of General Anisotropic Laminates,” International Journal of Solids and Structures, Vol. 40, pp. 1825–1852, 2003.
[19] Hwu, C., “Boundary Integral Equations for Unsymmetric Laminated Composites,” Advances in Boundary Element Techniques XI, Proceedings of the 11th International Conference on Boundary Element Techniques, Berlin, Germany, pp. 231-236, 2010.
[20] AEPH程式設計手冊