| 研究生: |
黃昱喬 Huang, Yu-Chiao |
|---|---|
| 論文名稱: |
通過自發四波混頻實現高度關聯性的超亮雙光子 Highly Correlated Ultrabright Biphotons Achieved via Spontaneous Four-Wave Mixing |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 自發四波混頻 、電磁誘發透明 、雙光子 |
| 外文關鍵詞: | Spontaneous four-wave mixing, Electromagnetically induced transparency, Biphoton |
| 相關次數: | 點閱:100 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在冷原子系統中,利用87Rb 的D2 譜線,我們將驅動光和耦合光反向打入系統產生了雙Λ 型自發四波混頻。理論分析上運用海森堡-朗之萬方程結合微擾理論,對原子與光場的交互作用進行了理論分析,推導出斯托克斯和反斯托克斯光子的理論產生率,同時利用格勞勃二階關聯性函數分析時間關聯性函數。我們進一步對包含環境漏光的實驗數據進行了詳細分析,並與理論值進行了擬合,結果顯示實驗數據與理論分析良好吻合。
在實驗中,首先在低雙光子產生率的條件下,觀察到峰值訊號-背景比為123,這違反了柯西-史瓦茲不等式,達到了3844 倍,表示在此時間區間光子間的量子關聯性非常大。為增加產生率,並保持光學密度一致性,我們調整了驅動光光強,這導致了背景產生率的增加,而峰值訊號保持不變,因此降低了峰值訊號-背景比。接著,我們進一步提升雙光子產生率,將驅動光調變縮小至5Γ,此時產生率達每秒
1.3 × 10^7,為已知最高雙光子產生率。然而,在此超亮雙光子條件下,光學密度為20 時,雙光子配對比為0.57,仍有相當部分光子無關聯性。隨後,我們在光學密度為40、60、80、100 和120 條件下,調整驅動光調變和耦合光光強以保持相同產生率和雙光子頻寬,得到雙光子配對比與光學密度呈正相關。在光學密度為120 條件下,雙光子配對比為0.87,提升了雙光子的配對比。此外,在雙Λ 型自發四波混頻過程中,由於存在Λ 型的電磁誘發透明結構,可以控制關聯性時間,進而決定系統的雙光子頻寬。主導延遲時間主要受兩個因素影響:一是由電磁誘發透明引起的慢光效應,二是由耦合光引起的拉比振盪。最終的延遲時間由這兩項因素之間的競爭所決定。我們在這兩個區域進行了實驗調整耦合光調變。耦合光調變越大,合理的延遲時間也越大,而產生率變化較小,因產生率主要受驅動光和光學密度影響。隨著耦合光調變增加,雙光子配對比變差,我們認為這是兩個基態間去同調率造成的資訊耗損。在耦合光較強的拉比振盪區域,雙光子配對比的耗損較少。
綜上所述,我們成功地在冷原子系統中產生了雙Λ 型自發四波混頻,並調整實驗參數研究其光子配對比和關聯性時間。這些結果有助於更深入了解光場與原子系統的交互作用,並為量子光學和量子信息處理領域的應用提供了有價值的參考。
In our study, we employed a double-Λ configuration to generate biphotons through spontaneous four-wave mixing (SFWM). The resulting photon pairs exhibited temporal correlation, where the appearance of the second photon, anti-Stokes photon, was conditional on detecting the first photon, Stokes photon, within the correlated time window. The temporal correlation profile could be adjusted by manipulating the intrinsic electromagnetically induced transparency (EIT), which was predicted using the Heisenberg-Langevin operator approach in our theoretical analysis. Remarkably, we achieved an impressive biphoton generation rate of up to 1.3*10^7 pairs per second at a relatively low optical depth of 20. However, under these conditions, we observed that only 60% of the Stokes photons were successfully paired. To overcome this limitation, we conducted further experiments and demonstrated that by increasing the optical depth to 120, the pairing efficiency could be significantly improved to 89%. This outcome highlights the tremendous potential of the double-Λ SFWM scheme as a robust source of biphotons, capable of achieving high generation rates while enhancing the efficiency of biphoton pairing through increased optical depth. Furthermore, under different experimental conditions, we observed a signal-to-background ratio of 123, which violated the Cauchy-Schwarz criterion by a factor of more than 3800. This remarkable result indicates the exceptional quality of the generated biphotons and opens up exciting possibilities for their applications in various fields, particularly in advancing the efficiency of photonic quantum communication and information processing.
[1] Z.-Y. Liu, J.-S. Shiu, C.-Y. Cheng, and Y.-F. Chen, “Controlling frequency-domain hong-ou-mandel interference via electromagnetically induced transparency,” Phys. Rev. A, vol. 108, p. 013702, Jul 2023.
[2] J.-Y. Juo, J.-K. Lin, C.-Y. Cheng, Z.-Y. Liu, I. A. Yu, and Y.-F. Chen, “Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms,” Phys. Rev. A, vol. 97, p. 053815, May 2018.
[3] Z.-Y. Liu, J.-T. Xiao, J.-K. Lin, J.-J. Wu, J.-Y. Juo, C.-Y. Cheng, and Y.-F. Chen, “Highefficiency backward four-wave mixing by quantum interference,” Scientific Reports,vol. 7, no. 1, p. 15796, 2017.
[4] R. Bedington, J. M. Arrazola, and A. Ling, “Progress in satellite quantum key distribution,” npj Quantum Information, vol. 3, no. 1, p. 30, 2017.
[5] E. Polino, M. Valeri, N. Spagnolo, and F. Sciarrino, “Photonic quantum metrology,” AVS Quantum Science, vol. 2, p. 024703, Jun 2020.
[6] I. Bregman, D. Aharonov, M. Ben-Or, and H. S. Eisenberg, “Simple and secure quantum key distribution with biphotons,” Physical Review A, vol. 77, May 2008.
[7] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” Advances in Optics and Photonics, vol. 12, p. 1012, Dec 2020.
[8] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys., vol. 81, pp. 1301–1350, Sep 2009.
[9] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Reviews of Modern Physics, vol. 74, pp. 145–195, Mar 2002.
[10] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the tokyo qkd network,” Opt. Express, vol. 19, pp. 10387–10409, May 2011.
[11] A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, “Polarization state of a biphoton: Quantum ternary logic,” Phys. Rev. A, vol. 60, pp. R4209–R4212, Dec 1999. 122
[12] V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nature Photonics, vol. 5, no. 4, pp. 222–229, 2011.
[13] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett., vol. 96, p. 010401, Jan 2006.
[14] J. Joo, W. J. Munro, and T. P. Spiller, “Quantum metrology with entangled coherent states,” Phys. Rev. Lett., vol. 107, p. 083601, Aug 2011.
[15] G. Tóth and I. Apellaniz, “Quantum metrology from a quantum information science perspective,” Journal of Physics A: Mathematical and Theoretical, vol. 47, no. 42, p. 424006, 2014.
[16] M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Physics Reports, vol. 615, pp. 1–59, 2016.
[17] J. C. Howell, P. M. Anisimov, J. P. Dowling, and R. W. Boyd, “Single and biphoton imaging and high dimensional quantum communication,” Quantum Information Processing, vol. 11, no. 4, pp. 925–948, 2012.
[18] N. Gisin and R. Thew, “Quantum communication,” Nature Photonics, vol. 1, no. 3, pp. 165–171, 2007.
[19] C.-Y. Cheng, J.-J. Lee, Z.-Y. Liu, J.-S. Shiu, and Y.-F. Chen, “Quantum frequency conversion based on resonant four-wave mixing,” Physical Review A, vol. 103, Feb 2021.
[20] C.-Y. Cheng, Z.-Y. Liu, P.-S. Hu, T.-N. Wang, C.-Y. Chien, J.-K. Lin, J.-Y. Juo, J.-S. Shiu, I. A. Yu, Y.-C. Chen, and Y.-F. Chen, “Efficient frequency conversion based on resonant four-wave mixing,” Opt. Lett., vol. 46, pp. 681–684, Feb 2021.
[21] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Optimal architectures for long distance quantum communication,” Scientific Reports, vol. 6, no. 1, p. 20463, 2016.
[22] J.-W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature, vol. 410, no. 6832, pp. 1067–1070, 2001.
[23] C. Couteau, “Spontaneous parametric down-conversion,” Contemporary Physics, vol. 59, no. 3, pp. 291–304, 2018.
[24] Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett., vol. 83, pp. 2556–2559, Sep 1999.
[25] S. Magnitskiy, D. Frolovtsev, V. Firsov, P. Gostev, I. Protsenko, and M. Saygin, “A spdc-based source of entangled photons and its characterization,” Journal of Russian Laser Research, vol. 36, no. 6, pp. 618–629, 2015.
[26] A. Vanselow, P. Kaufmann, H. M. Chrzanowski, and S. Ramelow, “Ultra broadband spdc for spectrally far separated photon pairs,” Opt. Lett., vol. 44, pp. 4638–4641, Oct 2019. 123
[27] M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva, S. S. Straupe, and S. P. Kulik, “Anisotropically and high entanglement of biphoton states generated in spontaneous parametric down-conversion,” Phys. Rev. Lett., vol. 99, p. 063901, Aug 2007.
[28] M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett., vol. 100, p. 183601, May 2008.
[29] K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pairstate preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express, vol. 15, pp. 14870 14886, Oct 2007.
[30] S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H. Monken, “Entanglement and conservation of orbital angular momentum in spontaneous parametric downconversion,” Physical Review A, vol. 69, Feb 2004.
[31] P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter, and C. Kurtsiefer, “Compact source of polarization-entangled photon pairs,” Opt. Express, vol. 12, pp. 276–281, Jan 2004.
[32] J.-C. Tseng, “Theoretical study on photon generation based on stimulated raman scattering,” Master Thesis, 2020.
[33] J.-J. Lee, “Full quantum theory of double-Λ four-wave mixing based on electromagnetically induced transparency,” Master Thesis, 2019.
[34] S. Du, J. Wen, M. H. Rubin, and G. Y. Yin, “Four-wave mixing and biphoton generation in a two-level system,” Phys. Rev. Lett., vol. 98, p. 053601, Jan 2007.
[35] S. Du, E. Oh, J. Wen, and M. H. Rubin, “Four-wave mixing in three-level systems: Interference and entanglement,” Phys. Rev. A, vol. 76, p. 013803, Jul 2007.
[36] P. Kolchin, “Electromagnetically-induced-transparency-based paired photon generation,” Phys. Rev. A, vol. 75, p. 033814, Mar 2007.
[37] P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrowbandwidth paired photons: Use of a single driving laser,” Phys. Rev. Lett., vol. 97, p. 113602, Sep 2006.
[38] X.-S. Lu, Q.-F. Chen, B.-S. Shi, and G.-C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chinese Physics Letters, vol. 26, p. 064204, Jun 2009.
[39] Y.-S. Wang, K.-B. Li, C.-F. Chang, T.-W. Lin, J.-Q. Li, S.-S. Hsiao, J.-M. Chen, Y.-H. Lai, Y.-C. Chen, Y.-F. Chen, C.-S. Chuu, and I. A. Yu, “Temporally ultralong biphotons with a linewidth of 50 kHz,” APL Photonics, vol. 7, p. 126102, Dec 2022.
[40] T. Jeong, J. Park, and H. S. Moon, “Stimulated measurement of spontaneous four-wave mixing from a warm atomic ensemble,” Phys. Rev. A, vol. 100, p. 033818, Sep 2019. 124
[41] R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photonics, vol. 3, no. 2, pp. 103–106, 2009.
[42] T. Jeong, Y.-T. Chough, and H. S. Moon, “Light manipulation via spontaneous fourwave mixing in a warm double-Λ-type atomic ensemble,” Opt. Express, vol. 28, pp. 36611–36619, Nov 2020.
[43] J. Park, H. Kim, and H. S. Moon, “Induced coherence via spontaneous four wave mixing in atomic ensembles,” Advanced Quantum Technologies, vol. 4, no. 8, p. 2100065, 2021.
[44] H.-R. Noh and H. S. Moon, “Four-wave mixing in a ladder configuration of warm 87rb atoms: a theoretical study,” Opt. Express, vol. 29, pp. 6495–6508, Mar 2021.
[45] L. Zhu, X. Guo, C. Shu, H. Jeong, and S. Du, “Bright narrowband biphoton generation from a hot rubidium atomic vapor cell,” Applied Physics Letters, vol. 110, p. 161101, Apr 2017.
[46] B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett., vol. 111, p. 123602, Sep 2013.
[47] J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, “Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms,” Phys. Rev. A, vol. 87, p. 013845, Jan 2013.
[48] S. Yun, J. Wen, P. Xu, M. Xiao, and S.-N. Zhu, “Generation of frequency correlated narrowband biphotons from four-wave mixing in cold atoms,” Phys. Rev. A, vol. 82, p. 063830, Dec 2010.
[49] L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett., vol. 115, p. 193601, Nov 2015.
[50] C. P. et al, “Narrowband biphoton generation with four-wave mixing in a far detuning three-level system,” Chinese Physics Letters, vol. 28, p. 074214, Jul 2011.
[51] Z. Han, P. Qian, L. Zhou, J. F. Chen, and W. Zhang, “Coherence time limit of the biphotons generated in a dense cold atomcloud,” Scientific Reports, vol. 5, no. 1, p. 9126, 2015.
[52] I.-C. Huang, “Biphoton generation using spontaneous four-wave mixing in cold atoms,” Master Thesis, 2022.
[53] T.-H. Wu, “Heralded single-photon source with high purity based on spontaneous four-wave mixing atoms,” Master Thesis, 2023.
[54] M.-J. Lin, “Generation of correlated paired photons using doubled-Λ four wave mixing,” Master Thesis, 2021.
[55] Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett., vol. 113, p. 063602, Aug 2014. 125
[56] Y. Mei, Y. Zhou, S. Zhang, J. Li, K. Liao, H. Yan, S.-L. Zhu, and S. Du, “Einstein podolsky-rosen energy-time entanglement of narrow-band biphotons,” Phys. Rev. Lett., vol. 124, p. 010509, Jan 2020.
[57] H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett., vol. 106, p. 033601, Jan 2011.
[58] P. Chen, C. Shu, X. Guo, M. M. T. Loy, and S. Du, “Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two photon interference,” Phys. Rev. Lett., vol. 114, p. 010401, Jan 2015.
[59] S. E. Harris, “Electromagnetically induced transparency,” Opt. Photon. News, vol. 2, pp. 29–30, Dec 1991.
[60] C.-Y. Cheng, “Quantum frequency conversion based on resonant-type quantum nonlinear optics,” PhD Thesis , 2021.
[61] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature, vol. 414, no. 6862, pp. 413–418, 2001.
[62] C.-M. Yang, “Narrowband stoke photons generation based on DLCZ protocol,” Master Thesis, 2021.