簡易檢索 / 詳目顯示

研究生: 謝坤峰
Hsieh, Kun-Feng
論文名稱: 最佳自我決策預測模式於多機對抗模擬之實現
Implement Multiple Air-Combat Simulation Using Prediction of Optimal Self-Determination Maneuver
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 82
中文關鍵詞: 協商理論多機對抗模擬
外文關鍵詞: Multiple Air-Combat, Utilitarian solution
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文以整體系統的觀點研究多機協同空戰問題,避免將多機空戰認為是單機空戰的簡單數量上的相加所帶來的不足。整個理論的架構是以雙機對抗模擬為依據,應用協商策略理論,進而擴展到多機對抗模擬系統。
      最佳的追逐/逃逸策略係利用遊戲理論,參酌飛行員的實際空戰經驗及策略,定義足以反應空戰局勢的計分函數,包含方位、距離、速度及高度分數的計分;為了適應不同之作戰需求,總分模式決定最適切之計分權重;飛行決策,係以飛機能做的最大極限動作為考量;為了提高計算效率,提供三種計分時間方式的計分時間模式。而勝負及攻擊得分則由勝負模式裁判與計算。本論文的結果,已成功利用”大規模空戰轉化為小規模空戰原則”以及”Utilitarian解”將多機空戰系統於matlab中模擬實現,並通過模擬驗證該思路下研究多機協同空戰的有效性。

      In this thesis ,we consider multiple air-combat as a whole system. Decision information fusion will be introduced in the air-combat model to overcome the shortage of traditional ideals. This thesis combines the decision and game theory with the practice situation of multiple air-combat to form a simulation model with adjustable weights reflecting different combat scenarios. We combine with new thought of using consulting theory in multiple air to cope with the complex situation during multiple air combat.
      The optimal strategy of pursuit-evasion game defines four Kinds of scoring functions according to actual air combat experience and maneuver. The scoring function is composed of contributions consisting of an orientation score, a relative range score, a velocity score and aterrain score. In maneuver -selection mode we will compute the entire scoring matrix and select the maneuver corresponding to the max-min score. In order to promote computing efficiency, we use three different scoring time modes. We use the Game theory and Utilitarian solution to solve 2 versus 2 multiple air-combat problem and prove that it can work in 10 versus 10 multiple air-combat simulation. The result reveals that the developed theory can get better result than the traditional ideals.

    授權書 簽署人須知 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 V 表目錄 VII 符號說明 第一章 緒論 1 1.1 前言 1.2 研究背景與文獻回顧 1.3 各章概述 第二章 單架戰機之運動方程式及優勢值運算 6 2.1 單架戰機之運動方程式 2.2 計分函數 2.3 總優勢值計算 2.4 勝負定義 第三章 多機對抗模擬系統 20 3.1 遊戲理論簡介 3.2 多機空戰轉化為小規模集團作戰的原則 3.3 作戰集團內部的決策融合機制及型心法 3.4  Utilitarian解實現合理協商解 第四章 模擬結果 34 4.1 初值與參數 4.2 2對2對抗模擬 4.3 10對10對抗模擬 第五章 結論及未來展望 76 5.1 結果討論 79 5.2 未來展望 82 參考文獻 自述

    [01] Lewis, M. S.,and Aiken, E. W., "Piloted Simulation of one-on-one
       Helicopter Air Combat at NOE Flight Levels," NASA TM 86686 and USAA  
       VSCOM TR85-A-2, April 1985.
    [02] Austin, F., Carbone, G., Falco, M., and  
     Hinz, H., "Automated Maneuvering   Decisions for Air-to-Air Combat, Grumman Corporate Research Center,   
       Bethpage, NY, CRC Report. RE-742, Nov. 1987.
    [03] Austin, F., Carbone, G., Falco, M., and Hinz, H., "Game Theory for  
       Automated Maneuvering During Air-Air Combat, "Journal of Guidance,
       Control, and Dynamics, Vol. 3, No. 6, p.1143~1149, 1990.
    [04] 趙慎餘譯,博戲的理論與應用,中華書局,E. S. Ventzel 原著。
    [05] Basar, T., and Olsder, G. J., Dynamic Noncooperative Game Theory,
       Academic Press, 1982.
    [06] Davidovitz, A., Shinar, J., “Two-Target Game Model of An Air Combat
       with Fire-and-Forget All-Aspect Missiles,” Journal of Optimization
       Theory and Applications, Vol. 63, No. 2, Nov, p 133-165, 1989.
    [07] Lirov, Y., Rodin, E.Y., Ghosh, B.K., ”Automated Learning by Tactical
       Decision Systems in Air Combat,” Computers & Mathematics with
       Applications Vol. 18, No. 1-3, p 151-160, 1989.
    [08] Merz, A.W. ”IMPLEMENTING AIR COMBAT GUIDANCE LAWS,” Journal of Dynamic
       Systems, Measurement and Control, Vol. 111, No. 4, Dec, p 605-608, 1989.
    [09] Meyer, Scott K., Trigeiro, William W., “Simultaneous Two-Pursuer
       Differential Game,” Lecture Notes in Control and Information Sciences
       Proceedings of the 4th International Symposium on Differential Games and
       Applications Aug 9-10, p 111-117, 1991.
    [10] Imado, Fumiaki, “Some Aspects of a Realistic Three-Dimensional Pursuit-
       Evasion Game,” Journal of Guidance, Control, and Dynamics, Vol, 16, No.
       2, Mar-Apr, p 289 –293, 1993.
    [11] Austin, Fred, George, Dino, Bivens, Court, “Real-Time Simulation of
       Helicopter Air-To-Air Combat,” Annual Forum Proceedings - American
       Helicopter Society 47th Annual Forum Proceedings,” May 6-8, Vol.1, p
       553-563,1991
    [12] Austin, Fred, George, Dino, Bivens, Court, “Automated Adversary for
       Piloted Simulation of Helicopter Air Combat in Terrain Flight,” Journal
       of the American Helicopter Society, Vol. 37, No. 4, Oct, p 25- 31,1992.
    [13] Zhang, An, Zhang, Min, Zhang, Qi, “On Simulation and Analysis of
       Helicopter Air-To-Air Combat,” Xitong Fangzhen Xuebao/Acta Simulata
       Systematica Sinica, Vol.10, No.2, Apr, p. 30-34, 1998.
    [14] Jarmark, Bernt, “Air Combat Aiming with a Game in the Lag of the Radar
       Data,” Lecture Notes in Control and Information Sciences Proceedings of
       the 4th International Symposium on Differential Games and Applications
       Aug 9-10, Vol. 156, p 14-27,1991.
    [15] Breitner, M.H., Pesch, H.J., Grimm, W., ”Complex Differential Games of
       Pursuit-Evasion Type with State Constraints, Part 2numerical Computation
       of Optimal Open-Loop Strategies,” Journal of Optimization Theory and
       Applications, Vol. 78, No. 3, Sep. p 443-463, 1993.
    [16] Wu, Yunjie, Song, Liguo, Jiang, Yuxian,” Method for Studying Attack-
       Evasion of Air Combat in the Flight Integrated System,” Beijing
       Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of
       Aeronautics and Astronautics, Vol.25, No.3, Jun. p 272-274, 1999.
    [17] Lawless, W.F., Castelao, Teresa, Ballas, James, ”Virtual Knowledge
       Bistable Reality and the Solution of Ill-Defined Problems,” IEEE
       Transactions on Systems, Man and Cybernetics Part C Applications and
       Reviews, Vol. 30, No.1, p 119-124, 2000.
    [18] Pei, Hai-Long, Tong, Ming-An, ”Team Differential Games,” 11th IFAC.
       Vol. 3, p 433-437, 1991.
    [19] Stilman, Boris, ”Dynamic Hierarchy for Multiagent Air Combat,”
       Proceedings of the 19th Annual International Computer Software and
       Applications Conference, p 83-88, 1995.
    [20] Sheng, Wei, Li, Jianxun, Tong, Mingan,” The Research of Differential
       Game Theory for Multiple Consulting Air Combat,” Systems Engineering &
       Electronics, Vol. 20. No. 3, p. 7-11, 1998.
    [21] Sheng, Wei, Tong, Mingan, Wang, Honglun, and Li, Jianxun, ”Decision and
       Information Fusion in Multiple Air Combat,” Journal of Beijing
       University of Aeronautics and Astronautics, Vol. 25, No. 6, p. 665-667,
       1999.
    [22] 楊憲東,孔健君,”最佳決策預測模式實現雙機對抗模擬,”中國航空太空學會學
       刊,Vol.30, No.2, p.149~159,1998.
    [23] H aranyi, J., C., “Game with in Complete Information Played by
       ‘Bayesian’ player,” Management Science, No.2, 1986.
    [24] Wang, Honglun Tong, Ming'an,”Simulation system for making better
       maneuvering scheduling in multi-aircraft air combat,”Journal of
       Northwestern Polytechnical University, Vol.16, NO.1, p70-74,1998.
    [25] Song, Liguo, Wu, Yunjie ,Jiang, Yuxian,”Dynamics model of air combat
       based on equations of line of sight,” Beijing Hangkong Hangtian Daxue
       Xuebao/Journal of Beijing University of Aeronautics and Astronautics,
       Vol.25, No.3, Jun, p306-309,1999.
    [26] 卓至元,”雙機對打的戰術模擬”,國立成功大學航空太空工程研究所碩士論文,1998

    下載圖示 校內:立即公開
    校外:2005-07-14公開
    QR CODE