| 研究生: |
陳明揚 Chen, Ming-Yang |
|---|---|
| 論文名稱: |
四階段定電流充電法應用於鋰離子電池之研究 Research on Four-Stage Constant Current Charging Method Applied to Li-Ion Battery |
| 指導教授: |
李建興
Lee, Chien-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鋰離子電池 、田口式直交表實驗法 、四階段定電流充電法 、降壓式轉換器 |
| 外文關鍵詞: | Lithium-ion battery, Taguchi method, Four-stage constant current charging method, Buck converter |
| 相關次數: | 點閱:133 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今鋰離子電池的應用範圍相當廣泛,無論是對於電動載具或是各類可攜式電子產品上,皆可發現其扮演著提供電能的角色,因此電池的充電方法變得極為重要,如何快速地恢復電池電量並兼顧安全性為良好充電方法之關鍵。本論文使用四階段定電流充電法作為鋰離子電池之充電方法,並利用田口方法搭配直交表以安排充電實驗,同時紀錄實驗數據並加以分析,即可得出每一階段之充電電流值,接著以降壓式轉換器為基礎,實際設計出一個可對電池進行四階段定電流充電之硬體電路,並以LabVIEW所建構出的電池監控界面,觀察電池的即時充電情況。
本論文於最後實驗比較四階段定電流充電法與傳統定電流定電壓充電法之充電特性,前者因皆以定電流對電池進行充電,因此充電時間較為固定,並會隨著到達設定之電量狀態而切換充電電流,以至於讓電池溫升不至於太高。然而,後者之充電時間與電池溫升,則會因定電流階段的時間長短而有所影響,定電流階段持續時間越長,充電時間就會越短,但對電池所造成的溫升會較明顯;相反地,定電流階段持續時間越短,能減緩充電期間所造成的溫升,卻又拉長整體之充電時間。故四階段定電流充電法相對於傳統定電流定電壓充電法,達到了縮短充電時間與減緩了充電期間對電池所造成之溫升。
Nowadays lithium-ion battery has a wide range of applications. Whether it is for electric vehicles or all kinds of portable electronic products, we can discover that it plays a role of providing electricity. Thus the charging method of batteries becomes important. The key point of being a fine charging method is to recover the state of charge (SOC) fast and give consideration to its safety. This thesis applies four-stage constant current charging method to lithium-ion battery and utilizes Taguchi method combined with orthogonal arrays to arrange the charging experiments. In the meantime, the experimental data will be recorded and analyzed to obtain the charging current of each stage. Then, a hardware circuit capable of charging the battery with four-stage constant current charging method is designed on the basis of a buck converter. Moreover, a monitoring interface constructed by LabVIEW is used to observe the real-time battery charging state.
This thesis compares the characteristics of four-stage constant current charging method with traditional CCCV charging method at last. The experimental results show that the former has a more fixed charging time due to the constant charging current for the entire charging period and switches the charging current as the SOC reaches the pre-set value in case of causing too much heat to the battery during the charging period. However, the charging time and the battery temperature of the latter will be affected by the length of CC stage, with the longer CC stage, which will increase the battery temperature, the charging time will be shorter. On the contrary, the shorter CC stage reduces the heat to the battery while it takes more time to fully charge the battery. Therefore, compared with the traditional CCCV charging method, four-stage constant current charging method shortens the charging time and reduces the heat during the charging period overall.
[1] R. C. Cope and Y. Podrazhansky “The art of battery charging,” IEEE Battery Conference on Applications and Advances, pp.1-3, Jan. 12-15, 1999, Long Beach, CA, USA.
[2] C.-H. Lin, H.-W. Huang and K.-H. Chen, “Built-in resistance compensation (BRC) technique for fast charging li-ion battery charger, ” IEEE Custom Integrated Circuits Conference, pp. 1-4, Sep. 21-24, 2008, San Jose, CA, USA
[3] T. Ikeya, N. Sawada, J. Murakami, K. Kobayashi, M. Hattori, N. Murotani, S. Ujiie, K.Kajiyama, H. Nasu, H. Narisoko, Y. Tomaki, K. Adachi, Y. Mita and K. Ishihara, “Multi-step constant-current charging method for an electric vehicle nickel/metal hydride battery with high-energy efficiency and long cycle life,” Journal of Power Sources, vol. 105, no. 1, pp. 6-12, March 5, 2002.
[4] Y.-H. Liu, C.-H. Hsieh and Y.-F. Luo “Search for an optimal five-step charging pattern for li-ion batteries using consecutive orthogonal arrays,” IEEE Transactions on Energy Conversion, vol. 26, no. 2, pp. 654-661, June 2011.
[5] Y.-H. Liu and Y.-F. Luo “Search for an optimal rapid-charging pattern for li-ion batteries using the Taguchi approach,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 3963-3971, Dec 2010.
[6] 陳浩銘、林泱蔚、林滄浩,“高分子型鋰離子二次電池介紹”,台灣大學化學系,民國91年1月。
[7] 王柏崴,“機器人之智慧型充電站與電源管理”,國立成功大學工程科學學系,碩士論文,民國97年7月。
[8] X. Chen, W. Shen, T. T. Vo, Z. Cao, and A. Kapoor, “An overview of lithium-ion batteries for electric vehicles,” 10th International Power & Energy Conference (IPEC), pp. 230-235. Dec. 12-14, 2012, Ho Chi Minh City, Vietnam.
[9] W. Shen, T. T. Vo and A. Kapoor “Charging algorithms of lithium-ion batteries: An overview,” 7th IEEE Conference on Industrial Electronics and Applications, pp. 1-6, July 18-20, 2012, Singapore, Singapore.
[10] 陳榮志、謝定良、李政哲、陳旭偉,“鋰電池充電器性能與安全測試之研究”, 經濟部標準檢驗局自行研究計畫98年度,經濟部標準檢驗局台中分局,民國98年12月31日。
[11] 劉峰其,“非線性鋰電池之充放電模型” ,國立中央大學電機工程學系,碩士論文,民國99年6月。
[12] M. Chen and G. A. Rinc´on-Mora, “Accurate electrical battery model capable of predicting runtime and I–V performance,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504-511, June 2006.
[13] T. Kim and W. Qiao, “A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects,” IEEE Power and Energy Society General Meeting, vol. 26, no. 4, pp. 1172-1180, Dec. 2011.
[14] 傅志堅,“氧化鋰鐵磷電池參數建立與殘量估測之研究”,國立臺灣科技大學電機工程學系,碩士論文,民國102年7月18日。
[15] 張崇豪,“應用田口方法於撲翼機之設計”,國立成功大學航空太空工程學系,碩士論文,民國99年6月。
[16] 江志祥,“運用田口方法改善鋰離子電池組測試之效率”,國立台北科技大學電機工程學系,碩士論文,民國104年1月。
[17] 李輝煌,田口方法:品質設計的原理與實務,第四版,高立圖書有限公司,民國100年5月1日。
[18] 蔡憲唐、姜昱伊、呂宗翰、簡永杰、石孟勳,“田口方法於聯合分析之應用”,行政院國家科學委員會專題研究計畫,民國95年10月31日。
[19] T. T. Vo, X. Chen, W. Shen and A. Kapoor, “New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation,” Journal of Power Sources, vol. 273, pp. 413-422, Jan. 2015.
[20] 朱順義,“鋰電池快速充電波形設計”,義守大學電機工程學系,碩士論文,民國93年。
[21] Arduino Mega2560 Datasheet, (Date of retrieval: March 20, 2016): http://www.arduino.cc/en/Main/ArduinoBoardMega2560.
[22] A. Al-Refaie, T.-H. Wu and M.-H. Li, “An effective approach for solving the multi-response problem in Taguchi method,” Jordan Journal of Mechanical and Industrial Engineering, vol. 4, no. 2, pp. 314-323, Mar. 2010.
[23] 江炫樟,電力電子學 第三版,全華科技圖書股份有限公司,民國92年7月。
[24] 梁適安,交換式電源供給器之理論與實務設計修訂版,全華圖書股份有限公司,民國97年9月。
[25] TL494 Datasheet, (Date of retrieval: March 20, 2016):
www.ti.com/lit/ds/symlink/tl494.pdf
[26] Designing Switching Voltage Regulators With the TL494 , (Date of retrieval: March 20, 2016):
http://www.ti.com/lit/an/slva001e/slva001e.pdf
[27] TLP250 Datasheet, (Date of retrieval: March 20, 2016):
https://toshiba.semicon-storage.com/info/docget.jsp?did=16821&prodName=TLP250
[28] LT227 Datasheet, (Retrieval date: April 2017), (Date of retrieval: March 20, 2016):
http://www.letex.com.tw/dow.php?type=pdf&file=.%2Fupload%2Fproduct%2FLT227%2Ffile1.pdf&serial=LT227
[29] 吳義利,切換式電源轉換器原理與實用設計技術(實例設計導向),文笙書局股份有限公司,民國101年7月。
校內:2022-07-18公開