簡易檢索 / 詳目顯示

研究生: 陳威呈
Chen, Wei-Chang
論文名稱: 有機金屬氣相沉積之氮砷化銦鎵特性研究
MOVPE Growth and Investigation of GaInNAs Alloy
指導教授: 陳志方
Chen, Jone-Fang
蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 112
中文關鍵詞: 有機金屬氣相沉積氮砷化銦鎵光激發螢光光譜
外文關鍵詞: PL, GaInNAs, MOVPE
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   新穎的氮砷化銦鎵材料在光纖通訊應用的領域裡較常見的磷化銦材料系統更有吸引力,特別是具有較大的傳導帶能隙差以及與砷化鎵基板的晶格常數相近。在本論文中,我們對氮砷化銦鎵之有機金屬氣相沉積與其光特性、電特性都有廣泛的探討。其中,在氮溶入砷化銦鎵方面,可藉由降低成長溫度以及銦在化合物中的組成或是提高成長速度以及uDMHy對五族的比例來提高但融入的比例。然而,增加氮的含量卻會使其光特性有很大的劣化,這種劣化可藉由熱處理來改善,但是卻會使得其發光波長變短,降低了氮融入所引致能隙下降的效果。這種變化可歸因於去除氫披覆的效果以及氮鍵結的改變。此外也探討了氮砷化銦鎵的能隙對溫度的穩定性以及氮組成與活化能的關係。在高溶入氮的樣品中可發現到氮群聚的現象,此種現象造成了在光激發螢光光譜中的三重波峰,顯示藉由提高氮含量來降低能隙的不良影響。換言之,最佳的氮砷化銦鎵應用條件應該是在提高發光波長以及加入氮所引發的光特性劣化間做一妥協。最後,所製備氮砷化銦鎵的三重量子井雷射已可成功操作在1200nm的發光波長,且其臨限電流密度為600A/cm2。

      The novel dilute nitride GaInNAs alloys have several advantages over conventional InP material such as large conduction band offset and lattice matched to GaAs substrate ,which are great attractive in the application of optical communication. In this thesis, we investigated GaInNAs extensively from the MOVPE growth, to the optical-electrical properties. The nitrogen content can be increased by lowering growth temperature and indium composition, increasing growth rate and the uDMHy to Group V ratio. However, the increased nitrogen incorporation could lead to the inferior optical properties, but these degraded properties can be improved by thermal treatment at the cost of blue-shift in emission wavelength. The changes of GaInNAs PL spectra caused by annealing are ascribed to the local N environment transformation and removal of hydrogen passivation. Besides, the temperature stability of GaInNAs bandgap and its activation energy are also investigated. The nitrogen clustering causes the triple-peak spectrum observed in PL spectrum implies the disadvantage of bandgap reduction using high nitrogen content. In other words, the optimized condition for GaInNAs to emit at 1300nm should be a compromise between emission wavelength and optical properties induced by nitrogenincorporation. Finally, 1200nm pulse operating was successfully achieved by GaInNAs TQW BA laser which had a threshold current of 600A/cm2.

    Abstract Acknowledgement Table and Figure Captions Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Nitrogen Incorporation Effect 4 1.3 Organization of this Dissertation 8 Chapter 2 MOVPE System and Related Characterization Techniques 20 2.1 Metal Organic Vapor Phase Epitaxy (MOVPE) system 20 2.1.1 Mass transport limited growth 21 2.1.2 Surface kinetics limited growth 21 2.1.3 Thermodynamics 22 2.2 HR-XRD characterization 23 2.3 Photoluminescence (PL) Spectroscopy 25 Chapter 3 MOVPE Growth of GaInAs and Ga(In)NAs Materials 33 3.1 Epitaxy of InGaAs MQWs 33 3.2 MOVPE consideration of dilute nitride alloys 35 3.2.1 Precursors and Growth Temperature 35 3.2.2 Parasitic reaction between DMHy and Group III precursors 36 3.3 Assessment of Nitrogen Composition 39 3.3.1 Difficulties in Analyzing Compositions of Dilute-Nitride Alloy 39 3.3.2 Assessment of Indium and Nitrogen Composition 39 3.4 Influences of MOVPE Factors on Nitrogen Incorporation42 Chapter 4 Optical and Electrical Properties of GaInNAs Material 62 4.1 Effects of post-growth thermal annealing on GaInNAs/GaAs MQWs 62 4.1.1 Effects of Hydrogen Passivation 64 4.1.2 Local N Environment Transformation 65 4.2 Temperature Dependent Photoluminescence properties of GaInNAs/GaAs QWs 66 4.3 High Nitrogen Incorporation Induced Quantum Dot Like behavior of GaInNAs/GaAs SQW 68 4.4 Electrical properties of GaInNAs 72 Chapter 5 GaInNAs Device Application 98 5.1 Epitaxial Prerequisites of Device Application 98 5.2 Fabrication of GaIn(N)As Edge-emitting Lasers 99 Chapter 6. Conclusions and Suggestions for Future Work 111

    [1.1] J. S. Harris Jr., "GaInNAs long-wavelength lasers: progress and challenges," Semicond. Sci. Technol., Vol. 17, pp. 880-891, (2002) [1.2] J. Hecht, Understanding Fiber Optics. Upper Saddle River, NJ: Prentice Hall, 2002. [1.3] A. F. Phillips, S. J. Sweeney, A. R. Adams, and P. J. A. Thijs, "The temperature dependence of 1.3 and 1.55µm compressively strained InGaAs(P) MQW semiconductor lasers," IEEE J. Select. Topics Quantum Electron., Vol. 5, pp. 301-352, (1999) [1.4] M. Yano, H. Imai, and M. Takusagawa, "Analysis of threshold temperature characteristics for InGaAsP/InP double heterojunction lasers," J. Appl. Phys., Vol. 52, no. 5, pp. 3172-3175, (1981) [1.5] N. K. Dutta and R. J. Nelson, “Temperature dependence of threshold of InGaAsP/InP double-heterostructure lasers and Auger recombination”, Appl. Phys. Lett., Vol. 38, no. 6, pp. 407-409, (1981) [1.6] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, and Y. Yazawa, Jpn. J. Appl. Phys. Vol.35, pp1273, (1996) [1.7] J. C. Phillips, “Bonds and Bands in Semiconductors”, eds. A. M. Alper, J. L. Margrave, and A. S. Nowick, Academic Press, New York, (1973) [1.8] J. A. Van Vechten, and T. K. Bergstresser, Phys. Rev. B,Vol.1, pp. 3351, (1970) [1.9] L. G. Ferreira, S. W. Wei, and A. Zunger, Phys. Rev. B, Vol.40 pp.3197, (1989) [1.10] C. W. Coldren, S. G. Spruytte, J. S. Harris, and M.C.Larson, “Group III nitride-arsenide long wavelength lasers grown by elemental source molecular beam epitaxy”, Appl. Phys. Lett. Vol. 18, pp. 1480-1483 [1.11] A. Pomarico, M. Lomascolo, R. Cingolani, A. Y. Egorov, and H. Riechert, “Effects of thermal annealing on the optical properties of InGaNAs/GaAs multiple quantum wells”, Semicond. Sci. Technol. Vol. 17, pp. 145-149, (2002) [1.12] I. A. Buyanova, G. Pozina, P. N. Hai, N. Q. Thinh, J. P. Bergman, W. M. Chen, H. P. Xin, and C. W. Tu, “Mechanism for rapid thermal annealing improvements in undoped GaNxAs1-x/GaAs structures grown by molecular beam epitaxy”, Appl. Phys. Lett. Vol.77, pp. 2325-2327, (2000) [1.13] T. Kitatani, K.Nakahara, M. Kondow, K. Uomi, and T. Tanaka, “Mechanism analysis of improved GaInNAs optical properties through thermal annealing”, J. Cryst. Growth, Vol. 209, pp. 345-349, (2000) [1.14] M. Weyers, M. Sato, and H. Ando, “Red shift of photoluminescence and absorption of dilute GaAsN alloy layers”, Jpn. J. Appl. Phys. Vol. 31(7a) pp. L853-L855 (1992) [1.15] M. Kondow, K. Uomi, K. Hosomi, T. Mozume, “Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source”, Jpn. J. Appl. Phys. Vol. 33(Part2, No.8A) pp. L1056-L1058 (1994) [1.16] S. Sakai, Y. Ueta and Y. Terauchi: Jpn. J. Appl. Phys. 32(Part2, No.8A) pp. 4413 (1993) [1.17] S. Sakai, Y. Ueta, Y. Terauchi, “Band gap energy and band lineup of III-V alloy semiconductors incorporating nitrgen and boron”, Jpn. J. Appl. Phys. Vol. 32(Part 1, No 10), pp. 4413-4417 (1993) [1.18] K. Uesugi, I. Suemune, “Bandgap energy of GaNAs alloys grown on (001) GaAs by metalorganic molecular beam epitaxy”, Jpn. J. Appl. Phys. Vol. 36 (Part 2, No. 12A) pp. L1572-1575 (1997) [1.19] S. Francoeur, G. Sivaraman, Y. Qiu, S. Nikishin, H. Temkin, “Luminescence of as-grown and thermally annealed GaAsN/GaAs”, Appl. Phys. Lett. Vol. 72, pp.1857-1859 (1998) [1.20] U. Tisch, E. Finkman, and J. Salzman, “The anomalous bandgap bowing in GaAsN”,Appl. Phys. Lett. Vol. 81, pp. 463 (2002). [1.21] M. Kondow, K. Uomi, K. Hosomi, T. Mozume, “Gas-source molecular beam epitaxy of GaNxAs1-x using a N radical as the N source”, Jpn. J. Appl. Phys. Vol. 33(Part2, No.8A) pp. L1056-L1058 (1994) [1.22] W.G. Bi, C.W. Tu, “Bowing paramter of the band-gap energy of GaNxAs1-x”, Appl. Phys. Lett. Vol. 70, pp. 1608-1610 (1997) [1.23] S.-H. Wei, A. Zunger, “Giant and composition-dependent optical bowing coefficient in GaAsN alloys”, Phys. Rev. Lett. Vol. 76, pp. 664-667 (1996) [1.24] W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. olson, S.R. Kurtz, “Band anticrossing in GaInNAs alloys”, Phys. Rev. Lett. Vol. 82, pp.1221-1224 (1999) [1.25] A. Lindsay and E.P. O’Reilly, “Theory of enhanced bandgap non-parabolicity in GaNxAs1-x and related alloys”, Solid. State Commun., Vol.112, pp.443-447 (1999) [1.26] J. Wu, W.Shan, and W. Walukiewicz, “Band anticrossing in highly mismatched III-V semiconductor alloys”, Semicond. Sci. Technol., Vol.17, pp.860-869, (2002) [1.27] W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. olson, S.R. Kurtz, “Effect of nitrogen on the band structure of GaInNAs alloy”, J. Appl. Phys., Vol. 86, pp. 2349-2351 (1999) [1.28] C. Skierbiszewski, “Experimental studies of the conduction-band structure of GaInNAs alloys”, Semicond. Sci. Technol., Vol.17, pp. 803-814 (2002) [1.29] C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, J. F. Geisz, and J. M. Olson, “Large, nitrogen-induced increase of the electron effective mass in InyGa1-yNxAs1-x”, Appl. Phys. Lett., Vol. 76, 2409 (2000). [1.30] P. N. Hai, W. M. Chen, I. A. Buyanova, H. P. Xin, and C. W. Tu, “Direct
    determination of electron effective mass in GaNAs/GaAs quantum wells”, Appl. Phys. Lett., Vol. 77, 1843 (2000). [1.31] C. Skierbiszewski, P. Perlin, P. Wisniewski, T. Suski, J. F. Geisz, K. Hingerl, W. Jantsch, D. E. Mars, and W. Walukiewicz, “Band structure and optical properties of InyGa1-yAs1-xNx alloys”, Phys. Rev. B, Vol. 65, 035207 (2001). [1.32] M. Hetterich, M. D. Dawson, A. Yu. Egorov, D. Bernklau, and H. Riechert, “Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content”, Appl. Phys. Lett., Vol. 76, pp. 1030-1032 (2000) [1.33] C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, J. F. Geisz, and J. M. Olson, “Large, nitrogen-induced increase of the electron effective mass in InyGa1–yNxAs1–x”, Appl. Phys. Lett., Vol. 76, pp. 2409-2411 (2000) [1.34] P.N. Hai, W.M. Chen, I.A. Buyanova, H.P. Xin, C.W. Tu, “Direct determination of electron effective mass in GaNAs/GaAs quantum wells”, Appl. Phys. Lett. Vol. 77, pp. 1843-1845 (2000)[2.1] H. Manasevit and W. Simpson, “The use of metalorganics in the preparation of semiconductor materials I. epitaxial gallium-V compounds” , J. Electrochem. Soc. Vol. 116, pp. 1725 (1969). [2.2] J.-T. Zettler, K. Haberland, M. Zorn, M. Pristovsek, W. Richter, P. Kurpas and M. Weyers, “Real-time monitoring of MOVPE device growth by reflectance anisotropy spectroscopy and related optical techniques”, J. Cryst. Growth Vol. 195, pp. 151 (1998). [2.3] Aixtron 200 User’s Manual, Aixtron AG. [2.4] G.B. “Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, 1999 [2.5] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga , “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs quantum wells”, J. Cryst. Growth Vol. 221, pp. 503-508 (2000) [2.6] F. Salomonsson, C. Asplund, S. Mogg, G. Plaine, P. Sundgren, M. Hammar, “Low-threshold high-temperature operation of 1.2 µm InGaAs vertical cavity lasers”, Electron. Lett. Vol. 37(15), 957-958 (2001) [2.7] C. Asplund, P. Sundgren, S. Mogg, M. Hammar, U. Christiansson, V. Oscarsson, C. Runnström, E. Odling, J. Malmquist, “1260 nm InGaAs vertical-cavity lasers”, Electron. Lett. Vol. 38(13), pp.635-636 (2002) [2.8] A. Ougazzaden, Y. Le Bellego, E. V. K. Rao, M. Juhel, L. Leprince, and G. Patriarche , “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine”, Appl. Phys. Lett. Vol. 70, pp. 2861- 2863 (1997) [2.9] G. Plaine, C. Asplund, P. Sundgren, S. Mogg, M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3-µm GaInNAs/GaAs Single Quantum Well Lasers”, Jpn. J. Appl. Phys. Vol. 41 Part 1, No 2B, pp. 1040-1042 (2002) [2.10] C. Asplund, P. Sundgren, M. Hammar, “Optimization of MOVPE-grown GaInNAs/GaAs quantum wells for 1.3-µm laser applications”, Proceedings of the 14th Indium Phosphide and Related Materials Conference, Stockholm, May 12-16, 2002, pp. 619-621 [2.11] T. F. Kuech, D. J. Wolford, E. Veuhoff, V. Deline, P. M. Mooney, R. Potemski, and J. Bradley, “Properties of highpurity AlxGa1–xAs grown by the metalorganic vapor-phase-epitaxy technique using methyl precursors”, J. Appl. Phys. Vol. 62, pp. 632-643 (1987) [2.12] A.C. Jones, “Metalorganic precursors for vapour phase epitaxy”, J. Cryst. Growth Vol. 129, pp. 728-773 (1993) [2.13] C. Asplund, A. Fujioka, M. Hammar, G. Landgren, “Annealing studies of metal-organic vapor phase epitaxy grown GaInNAs bulk and multiple quantum well structures”, EW-MOVPE VIII, Prague, June 8-11, 1999, pp. 437-440 [2.14] A. T. Macrander, G. P. Schwartz, and G. J. Gualtieri, J. Appl. Phys. Vol.64, pp.6376, (1988) [2.15] W. G. Bi, F. Deng, S. S. Lau, and C. W. Tu, J. Vac. Sci. Technol. B, Vol.13, pp. 754, (1995)[3.1] Shun-lien Chaung “Physics of optoelectronic devices”, Wiley inter-science, New York, 1995 [3.2] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers I. Misfit dislocations,”J. Cryst. Growth, Vol. 27, pp. 118-125, (1974) [3.3] I. A. Buyanova, W. M. Chen, and B. Monemar, “Electronic Properties of Ga(In)NAs Alloys”, MRS Internet Journal Nitride Semiconductor Research, Vol. 6, no. 2, pp. 1-19, (2001) [3.4] P. Krispin, S. Spruytte, J. S. Harris, and K. Ploog, “Admittance dispersion of ntype GaAs/Ga(As,N)/GaAs heterostructures grown by molecular beam epitaxy,” J. Appl. Phys., Vol. 90, no. 5, pp. 2405-2410, Sept. 1, (2001) [3.5] R. Hull and J. C. Bean, “Misfit dislocations in lattice-mismatched epitaxial films”, CRC Solid State and Material Science, Vol. 17, pp. 507-546, (1992) [3.6] W. Stolz, “Alternative N-, P- and As-precursors for III/V-epitaxy”, J. Cryst. Growth, Vol. 209, pp. 272 (2000). [3.7] R. M. Lum and J. K. Klingert, “Thermochemistry of alkylarsine compounds used as arsenic precursors in metalorganic vapor phase epitaxy”, J. Appl. Phys. Vol. 66, pp. 3820 (1989) [3.8] Sarah Kurtz, R. Reedy, Greg D. Barber, J. F. Geisz, D. J. Friedman, W. E. McMahon, and J. M. Olson, “Incorporation of nitrogen into GaAsN grown by MOCVD using different precursors”, J. Cryst. Growth, Vol. 234, pp. 318 (2002) [3.9] Sarah Kurtz, R. Reedy, B. Keyes, Greg D. Barber, J. F. Geisz, D. J. Friedman, W. E. McMahon, and J. M. Olson, “Evaluation of NF3 versus dimethylhydrazine as N sources for GaAsN”, J. Cryst. Growth, Vol. 234, pp. 323 (2002). [3.10] A. J. Ptak, Sarah Kurtz, C. Curtis, R. Reedy, and J. M. Olson, “Incorporation effectsin MOCVD-grown (In)GaAsN using different nitrogen precursors”, J. Cryst. Growth, Vol. 243, pp. 231 (2002). [3.11] X. Wei, G. H. Wang, G. Z. Zhang, X. P. Zhu, X. Y. Ma, and L. H. Chen, “Metalorganic chemical vapor deposition of GaNAs alloys using different Ga precursors”, J. Cryst. Growth, Vol. 236, pp.516 (2002). [3.12] R.T. Lee and G.B. Stringfellow, “Pyrolysis of 1,1 Dimethylhydrazine for OMVPE growth”, J. Electron. Mat., Vol. 28, pp. 963-969 (1999) [3.13] E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith, and S. A. Rushworth, “Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium”, J. Cryst. Growth Vol. 217, pp.47-54 (2000) [3.14] J. C. Harmand, G. Ungaro, L. Largeau, and G. Le Roux, “Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAsN, GaInAsN, and GaAsSbN”, Appl. Phys. Lett. Vol. 77, pp. 2482-2484 (2000) [3.15] W. Li, M. Pessa, and J. Likonen, “Lattice parameter in GaNAs epilayers on GaAs: Deviation from Vegard's law”, Appl. Phys. Lett. Vol. 78, pp. 2864-2866 (2001) [3.16] B.R. Nag, S. Mukhopadhyay, "Energy levels in quantum wells of nonparabolic semiconductors", phys. stat. sol. (b) Vol. 175, pp. 103-112 (1993) [3.17] S. Niki, C. L. Lin, W. S. C. Chang, and H. H. Wieder, “Band-edge discontinuities of strained-layer InxGa1–xAs/GaAs heterojunctions and quantum wells”, Appl. Phys. Lett. Vol. 55, pp. 1339-1341 (1989) [3.18] M. A. Herman, D. Bimberg, and J. Christen, “Heterointerfaces in quantum wells and epitaxial growth processes: Evaluation by luminescence techniques”, J. Appl. Phys. Vol. 70, pp. R1-R52 (1991) [3.19] J.–P. Reithmaier, R. Höger, and H. Riechert, “Experimental evidence for the transition from two- to threedimensional behavior of excitons in quantum-wellstructures”, Phys. Rev. B, Vol. 43, pp. 4933–4938 (1991) [3.20] J.J. Coleman, "Strained layer quantum well heterostructure lasers", in Peter S. Zory, Jr. (Ed.): Quantum Well Lasers, Academic Press, (1993) [3.21] W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, H.P. Xin, C.W. Tu, "Band Anticrossing in III-N-V Alloys", phys. stat. sol., Vol. 223, pp. 75-85 (2001) [3.22] M. E. Sherwin and T. J. Drummond, “Predicted elastic constants and critical layer thicknesses for cubic phase AlN, GaN, and InN on β–SiC”, J. Appl. Phys. Vol. 69, pp. 8423-8425 (1991) [3.23] J. Hornstra and W.J. Bartels, “Determination of the lattice constant of epitaxial layers of III-V compounds”, J. Cryst. Growth, Vol. 44, pp. 513-517 (1978) [3.24] Y. C. Kao, T. P. E. Broekaet, H. Y. Liu, S. Tang, I. H. Ho, and G. B. Stringfellow, Mater. Res. Soc. Symp. Proc. Vol.423, pp.335 (1996) [3.25] J. Neugebauer and C. G. Van de Walle, Phys. Rev. B, Vol.51, pp.10586, (1995) [3.26] G. B. Stringfellow and G. Homi, J. Electrochem. Soc. Vol. 124, pp. 1806, (1977) [3.27] A. Moto, M. Takahashi, S. Takagishi, “drogen and carbon incorporation in GaInNAs”, J. Cryst. Growth Vol. 221, pp. 485 (2000). [3.28] F. Höhnsdorf, J. Koch, C. Agert and W. Stolz “Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy)”, J. Cryst. Growth, Vol. 195, pp. 391-396 (1998)[4.1] H. P. Xin, and C. W. Tu, Appl. Phys. Lett. Vol. 19, pp. 2442, (1998) [4.2] M. Kondow, K. Nakahara, T. Kitatani, Y. Yazawa, and K. Uomi, Electon. Lett. Vol.32, pp. 2244, (1996) [4.3] K. Nakahara, M. Kondow, T. Kitatani, M. Larson, and K. Uomi, IEEE Photon. Tech. Lett., Vol. 10, pp. 487, (1998) [4.4] G. Plaine, C. Asplund, P. Sundgren, S. Mogg, M. Hammar, “Low-temperature Metal-organic Vapor-phase Epitaxy Growth and Performance of 1.3-µm GaInNAs/GaAs Single Quantum Well Lasers”, Jpn. J. Appl. Phys. Vol. 41 Part 1, No 2B, 1040-1042 (2002) [4.5] C. S. Peng, E. M. Pavelescu, T. Jouhti, J. Konttinen, and M. Pessa, “Diffusion at the interfaces of InGaNAs/GaAs quantum wells”, Solid-State Electronics, Vol. 47, pp. 431-435, (2003) [4.6] L.Largeau, C.Bondoux, G.Patriarche, Asplund,C.; A.Fujioka, F.Salomonsson, M.Hammar, “Structural effects of the thermal treatment on a GaInNAs/GaAs superlattice”, Appl. Phys. Lett. Vol. 79, pp. 1795-1797, (2001) [4.7] P. J. Klar, H. Grüning, J. Koch, S. Schäfer, K. Volz, W. Stolz, W. Heimbrodt, A. M. Kamal Saadi, A. Lindsay, and E. P. O'Reilly, “(Ga, In)(N, As)-fine structure of the band gap due to nearest-neighbor configurations of the isovalent nitrogen”, Phys. Rev. B, Vol. 64, pp. 121203 (2001) [4.8] K. Kim and A. Zunger, “Spatial Correlations in GaInAsN Alloys and their Effects on Band-Gap Enhancement and Electron Localization”, Phys. Rev. Lett. Vol. 86, pp. 2609-2612 (2001) [4.9] Sarah Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D.Joslin, and N. Karam, “Structural changes during annealing of GaInAsN”, Appl. Phys. Lett. Vol. 78, pp. 748-750 (2001) [4.10] G. Baldassarri H. v. H., M. Bissiri, A. Polimeni, M. Capizzi, M. Fischer, M. Reinhardt, and A. Forchel, “Hydrogeninduced band gap tuning of (InGa)(AsN)/GaAs single quantum wells”, Appl. Phys. Lett. Vol. 78, pp. 3472-3474 (2001) [4.11] A. Polimeni, G. Baldassarri H. v., H. M. Bissiri, M. Capizzi, M. Fischer, M. Reinhardt, and A. Forchel, “Effect of hydrogen on the electronic properties of InxGa1–xAs1–yNy/GaAs quantum wells”, Phys. Rev. B, Vol. 63, 201304 (2001) [4.12] A. Polimeni, M. Capizzi, M. Geddo, M. Fischer, M. Reinhardt, and A. Forchel, Appl. Phys. Lett. 77, pp. 2870 (2000) [4.13] X. L. Liu, M.-E. Pistol, L. Samuelson, S. Schwetlick, and W. Seifert, Appl. Phys. Lett. Vol. 56, pp. 1451 (1990) [4.14] P. J. Klar, H. Gruning, W. Heimbrodt, J. Koch, F. Hohnsdorf, W. Stolz, P. M. A. Vicente, and J. Camassel, Appl. Phys. Lett. Vol. 76, pp. 3439 (2000) [4.15] S. M. Sze “Semiconductor Devices Physics & Technology”, New York , Wiley, 2002 [4.16] Y. P. Varshni, Physica, Vol. 34, pp. 149, (1967) [4.17] Shen, S. H. Pan, Z. Hang, J. Leng, F. H. Pollak, J. M. Woodall, and R. N. Sacks, "Photoreflectance of GaAs and Ga0.82Al0.18As at Elevated Temperatures up to 600°C.," Appl. Phys. Lett., Vol. 53, pp. 1080-1082, (1988) [4.18] T. K. Ng, S. F. Yoon, W. J. Fan, W. K. Loke, S. Z. Wang, and S. T. Ng, “Photoluminescence quenching mechanisms in GaInNAs’GaAs quantum well grown by solid source molecular beam epitaxy”, J. Vac. Sci. Technol. B, Vol. 21, pp. 2324-2328, (2003) [4.19] H. P. Xin, K. L. Kavanagh, Z. Q. Zhu, and C. W. Tu, “Quantum dot-like behavior ofGaInNAs in GaInNAs/GaAs quantum wells grown by gas-source molecular-beam epitaxy”, J. Vac. Sci. & Tech. B, Vol. 17, pp. 1649-1653, (1999) [4.20] H. P. Xin, K. L. Kavanagh, Z. Q. Zhu, and C. W. Tu, “Observation of quantum dot-like behavior of GaInNAs in GaInNAs/GaAs quantum wells”, Appl. Phys. Lett. Vol. 74, pp.2337-2339, (1999) [4.21] R. Singh, R. J. Molnar, M. S. UnIi, and T. D. Moustakas, “Intensity dependence of photoluminescence in GaN thin films”, Appl. Phys. Lett. Vol.64, pp. 336-338 (1994) [4.22] J. I. Pankove, “Optical Processes in Semiconductors “ Dover, New York, 1975 [4.23] M. Vening, D. J. Dunstan, and K. P. Homewood, Phys. Rev. B Vol. 48, pp. 2412, (1993) [4.24] R.J. Kaplar, D. Kwon and S.A. Ringe, Solar Energy Materials & Solar Cells, Vol. 69, pp. 85. (2001) [4.25] J. Z. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. Vol. 75, pp. 1899 (1999)[5.1] T. F. Kuech, E. Veuhoff and B. S. Meyerson, “Silicon doping of GaAs and AlxGa1−xAs using disilane in metalorganic chemical vapor deposition” J. Cryst. Growth, Vol. 68, pp.48, (1984) [5.2] M. Shimazu, K. Kamon, K. Kimura, M. Mashita, M. Mihara and M. Ishii, “Silicon doping using disilane in low-pressure OMVPE of GaAs”, J. Cryst. Growth, Vol. 83, pp.327, (1987) [5.3] P. R. Hageman, M. H. J. M. de Croon, X. Tang and L. J. Giling, “Pressure and temperature dependence of Zn incorporation in metalorganic chemical vapour deposition grown GaAs and AlGaAs using diethylzinc as precursor”, J. Cryst. Growth, Vol. 129, pp. 281, (1993)

    下載圖示 校內:2014-07-05公開
    校外:2014-07-05公開
    QR CODE