簡易檢索 / 詳目顯示

研究生: 郭晉位
Guo, Jin-Wei
論文名稱: 可電、熱控與可全光控之添加鈦酸鋇奈米粒子於染料摻雜液晶隨機雷射之研究
Electrically, thermally, and all-optically controllable random lasers based on dye-doped liquid crystal films with BaTiO3 nanoparticles
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 85
中文關鍵詞: 奈米粒子隨機雷射液晶
外文關鍵詞: nanoparticles, random laser, liquid crystal
相關次數: 點閱:48下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究添加鈦酸鋇奈米粒子於摻雜染料向列型液晶(DDLC)之隨機雷射,藉由外加電場調控與溫度調控以及不同波長光波調控下,探討隨機雷射強度受調控的機制與特性。由實驗結果得知,隨機雷射是由液晶盒內奈米粒子的多重散射所產生,且可藉由外加電壓的大小與控制樣品溫度以及調控UV光(365nm)與綠光(532nm)照射樣品時間共三種方式來調控隨機雷射輸出能量強弱,以下分別描述三種調控機制:
    (一)利用外加電壓改變正型液晶的排列方向由水平排向轉為垂直排向,藉此帶動雷射染料跟著旋轉,因此雷射染料的吸收及螢光皆由大變小,使得雷射輸出能量下降。
    (二)溫度上升時液晶排列逐漸趨向混亂導致破壞性散射增加,此情況會降低奈米粒子在液晶內的多重散射效果,造成隨機雷射強度下降。當溫度超過相變點液晶呈現透明清澈態,液晶破壞性散射消失,此時ㄧ強隨機雷射將再次出現。
    (三)依序曝照UV光與綠光於偶氮染料添加奈米粒子之DDLC樣品內可全光調控隨機雷射輸出。曝照UV(綠)光可使偶氮染料同素異構化由棒狀的trans態變為彎曲狀的cis態(由彎曲cis態回復棒狀的trans態)來增加(減少)液晶擾動引致的破壞性散射,藉此可降低(增加)奈米粒子在液晶中之多重散射效果,進而控制隨機雷射強度的降低(增加)。

    This thesis investigates electrically, thermally, and all-optically controllable random lasers based on dye-doped liquid crystal (DDLC) films with BaTiO3 nanoparticles. Experiment result show that the random lasing emission is resulted from the multiple-scattering of the nanoparticles in LC host and can be electrically, thermally and all-optically controlled by varying the applied voltage, the cell temperature, and the exposure times of one UV and one green beams, respectively. The mechanisms of the three controllabilities of the random lasers are described as follows:
    (1) The orientational changes of the LCs from homogeneous to homeotropic texture in the presence of increasing applied voltage lead to the absorption and thus the fluorensence emission of the laser dyes to decrease, resulting in the decrease of the random lasing emission.
    (2) The increasing destructive scattering resulting from the increasing fluctuation of LCs at increasing temperature can decrease the multiple-scattering effect of the nanoparticles in LCs host, resulting in the decrease of the random lasing. A strong random lasing emission can reappear once the LC-fluctuation-induced destructive scattering is disappeared as the LCs becomes isotropic.
    (3) All-optical controllability of the random lasing can be obtained by successively irradiating one UV and one green beam on the azo-dye-added DDLC with nanoparticles.The exposure of the UV (green) beam can cause the increase (decrease) of the LC-fluctuation-induced destructive scattering due to the trans→cis (cis-trans back) isomerization of the azo dyes. This may induce the decrease (increase) of the multiple-scattering effect of the nanoparticles in the LCs, resulting in the decrease (increase) of the random lasing emission.

    摘要 I Abstract II 致謝 IV 緒論 1 第一章 液晶簡介 3 1-1 何謂液晶 3 1-2 液晶的分類 4 1-2-1 長條狀分子 5 1-2-2 圓盤狀分子 11 1-3 液晶物理 12 1-3-1 光學異向性與雙折射性 12 1-3-2 液晶的連續體彈性形變理論 15 1-3-3 外加電場對絕緣向列相液晶的影響 16 1-3-4 秩序參數 18 1-3-5 溫度對向列相液晶的影響 19 1-3-6 Freedericksz transition 20 第二章 相關理論與機制 22 2-1 雷射原理 22 2-1-1 輻射理論 22 2-1-2 粒子數反轉分佈 25 2-1-3 雷射工作過程 28 2-2 隨機雷射 29 2-2-1 隨機雷射的理論與機制 29 2-2-2 隨機雷射的種類 30 2-2-3 染料摻雜液晶之隨機雷射機制 32 2-3 受激發染料分子導致液晶旋轉機制 33 2-3-1 光激發同素異構化反應 33 2-3-2 光致等溫相變與熱效應引致相變 36 第三章 實驗方法與過程 37 3-1 實驗材料介紹 37 3-2 樣品製作 42 3-2-1 材料配方調配 42 3-2-2 空樣品製作 42 3-2-3 填充材料至空樣品 43 3-3 量測添加鈦酸鋇奈米粒子於染料摻雜液晶樣品之電控、溫控與全光 控隨機雷射輸出特性 44 3-3-1 隨機雷射輸出量測 44 3-3-2 隨機雷射輸出訊號隨電壓調控之變化 47 3-3-3 隨機雷射輸出訊號隨溫度調控之變化 47 3-3-4 隨機雷射輸出訊號在全光調控下之變化 48 第四章 實驗結果與討論 50 4-1 量測不同液晶樣品頻譜圖 50 4-1-1 量測不同液晶樣品吸收與螢光放射頻譜圖 50 4-1-2 量測摻雜不同濃度鈦酸鋇奈米粒子於DDLC之隨機雷射頻譜 51 4-1-3 摻雜鈦酸鋇奈米粒子於DDLC樣品之偏振相關隨機雷射訊號量測 56 4-1-4量測螢光在奈米粒子摻入DDLC樣品中散射移動平均自由路徑 61 4-2 摻雜鈦酸鋇奈米粒子於DDLC樣品中,利用外加電壓調控隨機雷射輸出之量測 62 4-2-1 量測外加電壓調控下,樣品隨機雷射輸出之量測 62 4-2-2摻雜BaTiO3 NPs 於DDLC樣品中,量測外加電壓下,不同偏振之隨機雷射輸出頻譜 64 4-3 摻雜BaTiO3 NPs摻雜於DDLC樣品中,利用溫度調控隨機雷射螢光輸出頻譜之量測 67 4-3-1 量測溫度調控下,摻雜BaTiO3 NPs於DDLC樣品之隨機雷射螢光輸出頻譜之量測 67 4-4 使用加入偶氮染料於BaTiO3 NPs摻雜DDLC樣品,利用全光方式調控隨機雷射螢光輸出頻譜 72 4-4-1量測全光調控樣品隨機雷射螢光輸出頻譜 72 4-4-2 量測偶氮染料加入NPs摻雜DDLC樣品經UV光照後的隨機雷射螢光輸出以熱方式自然回復之頻譜 78 第五章 總結與未來展望 81 5-1 總結 81 參考文獻 83

    1.E. Fernández, M. Ortuño, S. Gallego, C. García, A. Márquez, A. Beléndez, and I. Pascual, Proc. SPIE 7358, 73581C (2009).
    2.M. Soellner, U. Vieth, K. Y. Hsu, S. H. Lin, and M. Gruber, Proc. SPIE 7358, 73580Y (2009).
    3.L. O. Palomares, P. Castro-Garay, and J. A. Reyes, Appl. Phys. Lett. 94, 181903 (2009).
    4.X.-J. Wang, Z.-D. Huang, J. Feng, X.-F. Chen, X. Liang, and Y.-Q. Lu, Opt. Exp. 16, 13168 (2008).
    5.H. Kogelnik and C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
    6.P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals,” (Oxford University Press, New York, 1993).
    7.H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, Phys. Rev. Lett. 84, 24 (2000).
    8.H. Cao, Wave. Random. Complex Media.13, 3 (2003).
    9.A. Yariv, “Optical Electronics in Modern Communications,” (Oxford University Press, New York, 1997).
    10.H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seeling, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999).
    11.T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, J. Chem. Phys. 107, 9319 (1997).
    12.L. M. Blinov and V. G. Chigrinov, “Electroopic Effects in Liquid Crystal Materials,” (Springer-Verlag, New York, 1994).
    13.F. Reintzer, Monatsh. Chem. 9, 421 (1888).
    14.F. Reintzer, O. Lehmann, and H. Keller, Mol. Cryst. Liq. Cryst. 21, 1 (1972)
    15.B. Bahadur, “Liquid Crystals-Applications and Uses,” Vol. 1, (World Scientific, Singapore, 1990).
    16.D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, Phys. Rev. B 64, 144208 (2001).
    17.I.-C. Khoo, “Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena,” (John Wiley & Sons Press, New York, 1995).
    18.S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, and S. John, Phys. Rev. B 61, R2389 (2000).
    19.Ch. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, Appl. Phys. Lett. 87, 121105 (2005).
    20.J. Martz, R. Ferrini, F. Nüesch, and L. Zuppiroli, J. Appl. Phys. 99, 103105 (2006).
    21.G. Alagappan, X. W. Sun, and P. Shum, J. Opt. Soc. Am. B 23, 1478 (2006).
    22.V. A. Tolmachev, T. S. Perova, S. A. Grudinkin, and V. A. Melnikov, Appl. Phys. Lett. 90, 011908 (2007).
    23.V. I. Kopp, Opt. Lett. 23, 1707 (1998).
    24.R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, Appl. Phys. Lett. 82, 3593 (2003)
    25.T. Matsui, M. Ozaki, and K. Yoshino, Appl. Phys. Lett. 83, 422 (2003).
    26.Y. J. Liu, X. W. Sun, and P. Shum, Appl. Phys. Lett. 88, 061107 (2006).
    27.L. M. Blinov, G. Cipparrone, and P. Pagliusi, Appl. Phys. Lett. 89, 031114 (2006).
    28.L. M. Blinov, Appl. Phys. Lett. 90, 131103 (2007).
    29.沈柯, 雷射原理教程 (亞東書局, 1990).
    30.A. Yariv and P. Yeh, “Photonics,” (Oxford University Press, New York, 2007).
    31.B. Tobias and K. Stefan, “Anderson localization and its ramifications: disorder, phase coherence and electron correlations,” (Springer, New, York, 2003).
    32.S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, Appl. Phys. Lett. 86, 141103 (2005).
    33.E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    34.S. John, Phys. Rev. Lett. 58, 2846 (1987).
    35.J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).
    36.V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Prog. Quantum Electron. 27, 369 (2003).
    37.A. Lagendijk and M. van Albada, Phys. Rev. Lett. 55,2692(1982).

    下載圖示 校內:2011-08-16公開
    校外:2011-08-16公開
    QR CODE