簡易檢索 / 詳目顯示

研究生: 廖修賢
Liao, Hsiu-Hsien
論文名稱: 金奈米粒子綴飾之奈米碳管修飾的電極進行葡萄糖與過氧化氫之非酵素電化學感測
Nonenzymatic electrochemical detection of glucose and hydrogen peroxide by the electrode modified with gold nanoparticles-decorated carbon nanotubes
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 92
中文關鍵詞: 電化學感測葡萄糖過氧化氫非酵素式
外文關鍵詞: electrochemical detection, glucose, hydrogen peroxide
相關次數: 點閱:89下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以化學還原法將金奈米粒子綴飾於聚丙烯酸(PAA)被覆之多壁奈米碳管(MWCNTs)表面,並將其沉積在網印碳電極上,用於葡萄糖與過氧化氫的電化學感測。首先將奈米碳管加入PAA水溶液中,在超音波下均勻混合形成PAA被覆之奈米碳管,並以聯胺為還原劑,將金奈米粒子綴飾於其表面。接著,在網印碳電極表面沉積此溶液,再進行葡萄糖與過氧化氫的感測。結果顯示,經Au-PAA-MWCNTs修飾之網印電極,在磷酸鹽緩衝溶液(0.1 M、pH 7.5)與氫氧化鈉溶液(0.1 M)中,對葡萄糖與過氧化氫皆有良好的電催化活性。在磷酸鹽緩衝溶液(0.1 M、pH 7.5)與氫氧化鈉溶液(0.1 M)中,以循環伏安法偵測葡萄糖濃度的線性範圍分別為0.5~30 mM與0.5~40 mM,偵側極限分別為84μM和37μm;以計時安培法偵測葡萄糖濃度的線性範圍則分別為2~10 mM、10~20 mM、20~46 mM與2~20 mM、20~50 mM,偵側極限分別為80μM和20μM。此外,在磷酸鹽緩衝溶液(0.1 M、pH 7.5)中,以安培法偵測過氧化氫,其濃度線性的範圍為10~1000 μM,偵側極限為3.84 μM。

    In this thesis, Au nanoparticles were decorated on PAA-coated multi-walled carbon nanotubes (MWCNTs) via chemical reduction and then deposited on the screen printed carbon electrode for the electrochemical detection of glucose and hydrogen peroxide. Firstly, MWCNTs were well dispersed into the aqueous solution of PAA via sonication to yield the PAA-coated MWCNTs, and then Au nanoparticles were decorated on their surface using hydrazine as the reducing agent. Secondly, the screen printed carbon electrode was modified with the resulting solution and then used to detect glucose and hydrogen peroxide. The result revealed that the screen printed carbon electrode modified by Au-PAA-MWCNTs displayed excellent electrocatalytic activities towards glucose and hydrogen peroxide in phosphate buffer solution (0.1 M, pH7.5) and NaOH solution (0.1 M). In phosphate buffer solution (0.1 M, pH7.5) and NaOH solution (0.1 M), the linear calibration curves of glucose concentration obtained by cyclic voltammetry were in the ranges of 0.5~30 mM and 0.5~40 mM, respectively. Their detection limits were 84μM and 37μM, respectively. The linear calibration curves of glucose concentration obtained by amperometric response were in the ranges of 2~10 mM, 10~20 mM, and 20~46 mM for phosphate buffer solution system and 2~20 mM and 20~50 mM for NaOH system. Their detection limits were 80μM and 20μM, respectively. Moreover, in phosphate buffer solution (0.1 M, pH7.5), the linear calibration curve of hydrogen peroxide concentration obtained by amperometric response was 10~1000 μM with a detection limit of 3.84 μM.

    中文摘要............................................I 英文摘要............................................II 誌謝................................................III 總目錄..............................................V 表目錄..............................................VII 圖目錄..............................................VIII 第一章 緒論.......................................1 1.1 感測器的簡介....................................1 1.2 葡萄糖感測器....................................4 1.3 過氧化氫感測器..................................10 1.4 碳奈米管........................................12 1.5 金奈米材料......................................18 1.6 研究動機........................................23 第二章 基礎理論...................................25 2.1循環伏安法.......................................25 2.2安培法...........................................36 第三章 實驗部分...................................38 3.1藥品材料與儀器...................................38 3.1.1藥品.........................................38 3.1.2儀器.........................................39 3.1.3材料.........................................40 3.2實驗方法.........................................41 3.2.1電極之製備與材料鑑定.........................41 3.2.2葡萄糖的電化學感測方法.........................44 3.2.3 過氧化氫的電化學感測方法....................45 第四章 結果與討論.................................48 4.1網印電極的前處理與材料鑑定.......................48 4.1.1網版印刷電極的前處理.........................48 4.1.2奈米碳管與金奈米粒子型態及尺寸大小...........49 4.1.3電極的表面結構...............................51 4.2葡萄糖的電化學感測...............................53 4.2.1偵測葡萄糖的電化學行為.........................53 4.2.2金前驅鹽濃度效應...............................57 4.2.3不同電極的影響...............................62 4.2.4葡萄糖溶液濃度的影響.........................66 4.2.5 外加干擾物的影響............................73 4.3 過氧化氫的電化學感測............................75 4.3.1 偵測過氧化氫的電化學行為....................75 4.3.2 施加不同電位的影響..........................77 4.3.3 過氧化氫溶液濃度的影響......................79 4.3.4 外加干擾物的影響............................82 第五章 結論........................................84 參考文獻............................................86

    1. 黃炳照、莊睦賢,電化學感測器,化工技術(第七卷第二期) (1999)。
    2. 陳詩喆,電流式葡萄糖生物感測器之製備及測試,國立台灣科技大 學化學工程研究所碩士論文 (2008)。
    3. M.Walker, J., Rapley, R.,分子生物學與生物技術,北京化學工業出版社 (2003)。
    4. 陳冠榮,以奈米金修飾電極製備電流式免疫型感測器,國立台灣科技大學化學工程研究所碩士論文,(2008)。
    5. Zorbas, V.; Ortiz-Acevedo, A.; Dalton, A. B.; Yoshida, M. M.; Dieckmann, G. R.; Draper, R. K.; Baughman, R. H.; Jose-Yacaman, M.; Musselman, I. H.; J. Am. Chem., Soc. 126, 7222. (2004)
    6. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nature Mater., 2, 338. (2003)
    7. Huang, W.; Taylor, S.; Fu, K.; Lin, Y.; Zhang, D.; Hanks, T. W.; Rao, A. M.; Sun, Y. P.(2002) Nano Lett., 2, 311. (2002)
    8. Sherwood, M. J.; Warchal, M. E.; Chen, S.-T. Clin. Chem.,29, 438. (1983)
    9. Law, W. T.; Doshi, S.; McGeehan, J.; McGeehan, S.; Gibboni, D.;Nikolioukine, Y.; Keane, R.; Zheng, J; Rao, J.; Ertingshausen, G.Clin. Chem., 43, 384. (1997)
    10. Zuk, R. F.; Ginsberg, V. K.; Houts, T.; Rabbie, J.; Merrick, H.;Ullman, E. F.; Fischer, M. M.; Sizto, C. C.; Stiso, S. N.; Litman,D.J. Clin. Chem. , 31, 1144. (1985)
    11. Lou, S.-C.; Patel, C.; Ching, S.; Gordon, J. Clin. Chem. , 39,619. (1993)
    12. 呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學研究所碩士論文 (2003)。
    13. Tumer, A. P., Chen, B., Piletsky, S. Clin. Chem., 45, 1596. (1999).
    14. Bartlett, P. N. Bioelectrochemistry, Ch5, UK: Wiley. (2008)
    15. Chaubey, A., Malhotra. B.D. Biosens. Bioelectron., 17,441 (2002)
    16. Vassilyev, Y. B.; Khazova, O. A.; Nikolaeva, N. N. J. Electroanal. Chem. 196, 105. (1985)
    17. Beden, B.; Largeaud, F.; Kokoh, K. B.; Lamy, C. Electrochim. Acta 41, 701. (1996)
    18. Bae, I. T.; Yeager, E.; Xing, X.; Liu, C.C. J. Electroanal. Chem. 309, 131. (1991)
    19. Hsiao M. W.; Adzic, R. R.; Yeager, E. B. J. Electrochem. Soc. 143 759. (1996)
    20. Adzic, R. R.; Hsiao M. W.; Yeager, E. B. J. Electroanal. Chem. 260, 475. (1989)
    21. L. Nagy, G. Nagy, P. Hajos, Sens. Actuat. B. 76, 494. (2001)
    22. Torto, N., Ruzgas, T., Gorton, L., J. Electroanal. Chem. 464 252. (1999)
    23. Luo, M.Z., Baldwin, R.P., J. Electroanal. Chem. 387 87. (1995)
    24. Li, Y., Song, Y.Y., Yang, C., Xia, X.H., Electrochem. Commun. 9, 981. (2007)
    25. Park, S., Chung, T.D., Kim, H.C., Anal. Chem. 75, 3046. (2003)
    26. You, T.Y., Niwa, O., Chen, Z.L., Hayashi, K., Tomita, M., Hirono, S., Anal. Chem. 75, 5191. (2003)
    27. Nagy, L., Nagy, G., Hajos, P., Sens. Actuators B Chem. 76, 494. (2001)
    28. Reitz, E., Jia, W.Z., Gentile, M., Wang, Y., Lei, Y., Electroanalysis 20, 2482. (2008)
    29. Cheng, X., Zhang, S., Zhang, H.Y., Wang, Q.J., He, P.G., Fang, Y.Z., Food Chem. 106, 830. (2008)
    30. Ding, Y., Wang, Y., Biosens. Bioelectron. 26, 542. (2010)
    31. Xian, Y. Z., Hu, Y., Liu, F., Xian, Y., Wang, H. T., Biosens. Bioelectron., 21, 1996. (2006)
    32. Yabuki, S., and Fujii, S. Microchim Acta. 164, 173. (2009)
    33. Cho, W. J., and Huang, H. J. Analytical Chemistry, 70, 3946-3951. (1998)
    34. Luo, Y. C., and Do, J. S. Biosens. Bioelectron., 20, 15-23. (2004)
    35. Arora, K., Sumana, G., Saxena, V., Gupta, R. K., Gupta, S. K., Yakhmi, J. V., Pandey, M. K., Chand, S., and Malhotra, B. D.Analytica Chimica Acta, 594, 17. (2007)
    36. Castillo-Ortega, M. M., Rodriguez, D. E., Encinas, J. C., Plascencia, M., Mendez-Velarde, F. A., and Olayo, R. Sens. Actuators, B. 85, 19. (2002)
    37. Singh, S., Solanki, P. R., Pandey, M. K., and Malhotra, B. D. Sens. Actuators, B. 115, 534 (2006)
    38. Rahman, A., Park, D. S., and Shim, Y. B. Biosens. Bioelectron., 19, 1565-1571. (2004)
    39. Long, L. H., Evans, P. J., and Halliwell, B. Biochem. Biophys. Res. Commun., 262, 605-609. (1999)
    40. Kalous, J., Brazdova, D., and Vytras, K. Anal. Chim. Acta, 283, 645. (1993)
    41. Demmano, G., Selegny, E., and Vincent, J. C. Eur. J. Biochem., 238, 785. (1996)
    42. Sunil, K., and Narayana, B. Bull. Environ. Contam. Toxicol., 81, 422. (2008)
    43. Aizawa, M., Ikariyama, Y., and Kuno, H. Anal. Lett., 17, 555 (1984)
    44. Li, G., Wang, Y., and Xu, H. Sensors, 7, 239-250. (2007)
    45. Ryan, B. J., Carolan, N., and O'Fagain, C. Trends Biotechnol., 24, 355. (2006)
    46. Chien-Chung Chen, Yesong Gu, Biosens. Bioelectron., 23, 765. (2008)
    47. Sun, Y. X., Zhang, H. T., Huang, S. W., and Wang, S. F.. Sens. Actuators, B., 124, 494. (2007)
    48. Lvovich, V., Scheeline, A., Anal. Chem. 69, 454. (1997)
    49. Wang, G.H., Zhang, L.M., J. Phys. Chem. B 110, 24864. (2006)
    50. Lin, X.Q., Chen, J., Chen, Z.H., Electroanalysis 12, 306. (2000)
    51. Kafi, A.K.M., Wu, G., Chen, A., Biosens. Bioelectron. 24, 566. (2000)
    52. Lin, M.S., Leu, H.J., Electroanalysis 17, 20683. (2005)
    53. Walker, C.H., Jolin-St, J.V., Wisian-Neilson, P., J. Am. Chem. Soc. 123, 3846. (2001)
    54. Wiley, B., Herricks, T., Sun, Y., Xia, Y., Nano Lett. 4, 2057 (2004)
    55. Iijima, S., Nature 354, 56. (1991)
    56. Walter, E.C., Zach, M.P., Favier, F., Murray, B.J., Inazu, K., Hemminger, J.C., Penner, R.M., Chem. Phys. Chem. 4, 131. (2003)
    57. Lin, K. C., T. H. Tsai, . Biosens. Bioelectron. 26, 608. (2010)
    58. 陳東煌,黃世宏,教育部「生物及醫學科技人才培育先導型計畫」生醫奈米技術,第六章:88 (2007)。
    59. http://www.ks.uiuc.edu/Research/nanotube/
    60. 李元堯,21世紀的尖端材料-奈米碳管,化工技術 3月: 140 (2003)。
    61. Chen,J. ; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science, 282, 95. (1998)
    62. Bekyarova, E.; Haddon, R. C.; Parpura, V. In : Kumar, C. ed. Biofunctionalization of Nanomaterials, Ch. 2, Weinheim: Wiley-VCH. (2005)
    63. 吳建成,金奈米粒子之綠色合成及其磁性複合奈米粒子之製備,國立成功大學化學工程所博士論文 (2010)。
    64. 林郁人,六硼化鑭/二氧化矽/金複合奈米粒子之製備及其光熱轉換與催化特性,國立成功大學化學工程所博士論文 (2010)。
    65. Turkevich, J., Kirn, G. Science, 169, 870 (1970).
    66. Goia, D. V., Matijevic, E., New J. Chem.,22, 1203 (1998).
    67. Ghosh, S. K.; Pal, T. Chem. Rev. 107, 4797. (2007)
    68. Tominaga, M., Shimazoe, T., Electrochem. Commun., 7,189 (2005)
    69. 黃世宏,奈米粉體在分離上及電化學感測上之應用研究,國立成功大
    70. Wang, J., Wang, L., Talanta 77,1454 (2009)
    71. Zhang, J.T., Qiu, C.C., Ma, H.Y., Liu, X.Y., J. Phys. Chem. C 112,13970. (2008)
    72. Bard, A. J.; Faulkner,L. R. Electrochemical Methods:Fundamentals and Applications , 2nd ed. New York: John Wiley & Sons. (2001)
    73. 連加雯,網版印刷電極的活化及其電分析化學的應用,國立中興大學化學系研究所碩士論文(2006)。
    74. Brett, C. M. A.; Brett, A. M. O. Electrochemistry : Principles, Methods, and Applications, Oxford University Press, New York. (1993)
    75. Jeffery, G. H., Bassett, J., Vogel’s textbook of quantitative chemical analysis, New York:Longman Scientific and Technical.(1989)
    76. Hsiao, M.W., Adzic, R.R., Yeager, E.B., J. Electrochem. Soc. 143, 759. (1996)
    77. Liu, Z., Huang, L., Zhang, L., Ma, H., Ding, Yi., Electrochim. Acta 54, 7286 (2009)
    78. Siegert, L., Kampouris, D. K., Kruusma, J., Sammelelg, V., Banks, C. E., Electroanalysis 21, 48 (2009)
    79. Cruickshank, A.C., Downard, A.J., Electrochim. Acta. 54, 5566 (2009)
    80. Wang, L., Bo, X., Bai, J., Zhu, L., Guo, L., Electroanalysis 22, 2536 (2010)

    下載圖示 校內:2013-08-10公開
    校外:2013-08-10公開
    QR CODE