| 研究生: |
傅柏森 Fu, Bo-Sen |
|---|---|
| 論文名稱: |
設計雙向無線通訊之可植入式生物微系統 Design of Bi-directional Wireless Communication for Implantable Biomicrosystem |
| 指導教授: |
陳家進
Chen, Jia-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | class-E放大器 、無線傳輸 、可植入式之生醫感測系統 |
| 外文關鍵詞: | class-E amplifier, wireless transmission, Implantable sensing devices |
| 相關次數: | 點閱:102 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近年來微電子技術、微機電技術、生物材料與生物相容性封裝技術的突破,使得感測元件可以趨向於微小化。不同的可植入式之生理訊號無線傳輸模組的發展,在臨床研究上將提供一可植入式生理訊號監測設備。本研究的目地在於實現具無線能量傳輸及雙向資料傳輸的通訊介面,應用在可植入式之生理訊號監測系統。可植入式感測系統以無線傳輸為特色,包含以無線方式傳輸能量及資料傳輸於植入式元件及外部電路之間。可植入式元件接收外部所傳遞的命令訊號,並依命令所指示來擷取所需要的生理訊號,以差動儀表級放大器及操作放大器為類比前端前級放大器。並使用類比數位轉換器,可以將已擷取之生理訊號予以數位化,並透過被動式的射頻傳輸方式將此數位資料經由無線傳輸方式傳至體外。此種傳輸方式為負載調變方式,允許透過同一個無線射頻電磁波傳輸能量及資料。
目前我們已經成功地設計、實現與測試完成了雙向傳輸之可植入式感測器所有系統的功能。配合適當的高效能功率放大器(Class-E power amplifier)及合適的負載調變指數,最大傳輸速度可達125 kbps。發射線圈與接收線圈之間的距離允許在4.5 公分以內,可使微感測器系統穩定的工作,並在發射線圈內允許植入式元件側向偏移。在微感測器系統方面,利用離散電子元件實現在20×40 mm2矩形雙面印刷電路板上,使用3-V直流為系統電源及整體系統功率消耗為70mW。此系統目前使用在急性的動物實驗並可提供與不同的換能器搭配使用。
With the advances in microelectronics, micromachining, biomaterials, and biocompatible package technology, many sensing devices can be fabricated in a miniaturized way. Various implantable sensing device modules have been developed as biological signal monitoring systems for various clinical researches in recent years. The aim of this study is to develop a wireless power and bi-directional data transmission for implantable sensing device systems. The proposed implantable sensing device takes the full advantages of wireless transmission features, including wireless transfer of power and data between the implant and an external unit. The implant receives the desirable command from external transmitter to determine the sampling rate and channel of implanted sensing module. For recording biological signals, we used differential mode instrumentation amplifier and operation amplifier to acquire the biosignals. The biological signals after differential amplification were send to analog-to-digital converter (ADC) from which and the digital data were transmitted outwards by using a passive RF telemetry link. For read-out transmission, a load shift key (LSK) approach, which allows wireless power and data transmission through the same RF link, is used in this study.
We have successfully designed, implemented and tested all the functional blocks of a bi-directional implantable sensing device system. With appropriate tuning of the class-E power amplifier and modulation index, the maximal read-out transmission rate can reach around 125 kbps when the distance between the transmitter coil and receiver coil is within 4.5 cm. Within this transmission distance, lateral displacement of receiver coil is allowed as long as it is inside the area of transmitting coil. The overall implantable sensing device including the RF interface circuitry dissipates 70 mW of power from a 3-V supply and occupies 20×40 mm2 of area. This prototype of implantable sensing device has been validated in acute animal experiment and can be utilized for varied implanted applications after biocompatible packing.
[1] W. J. Heetderks, “RF powering of millimeter and submillimeter sized neural prosthetic implants,” IEEE Trans. Biomed. Eng. vol. 35, pp. 323-327, 1988.
[2] S. Bourret, M. Sawan, and R. Plamondon, “Programmable high-amplitude balanced stimulus current-source for implantable microstimulators,” IEEE Proc. Eng. Medicine and biology society, vol. 5, pp. 1938-1941, 1997.
[3] J. Zacheja and T. Bach, “A telemetric measurement system for flow diagnostic after bypass surgery,” http://www.fh-bochum.de/fb3/almas/veroeffentlichungen/ bmt2002/bmt2002.pdf.
[4] T. Akin, K. Najafi and R.M. Bradley, ”A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode,” IEEE Trans. Solid-State Circuits, vol. 33, pp. 109-118, 1998.
[5] G. E. Loeb, F. J. R. Richmond, D. Olney, T. Cameron, A. C. Dupont, K. Hood, R. A. Peck, P. R. Troyk and H. Schulman, “BION/sup TM/. Bionic neurons for functional and therapeutic electrical stimulation”, Proc. IEEE 20th Int. Conf. Eng. Medicine and Biology Society, vol. 5, pp. 2305-2309, 1998.
[6] K. Stangel, S. Kolnsberg, D. Hammerschmidt, B.J. Hosticka, H.K. Trieu and W. Mokwa, ”A programmable intraocular CMOS pressure sensor system implant,”
IEEE Trans. Solid-State Circuits, vol. 36, pp. 1094-1100, 2001.
[7] Q. Huang and M. Oberle, “A 0.5-mW passive telemetry IC for biomedical applications,” IEEE Trans. Solid-State Circuits, vol. 33, pp. 937 -946, 1998.
[8] K. Arabi, and M. A. Sawan, “Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation,” IEEE Trans. Rehabilitation Engineering, vol. 7, pp. 204-214, 1999.
[9] B. Ziaie, M. D. Nardin, A. R. Coghlan, and K. Najafi, “A single-channel implantable microstimulator for functional neuromuscular stimulation,” IEEE Trans. Biomed. Eng. & Comput, vol. 44, pp. 909 -920, 1997.
[10] Chung-Kai Chen, “Design of Wireless Data and Power Transmission for Nerve Cuff Stimulation,” Masters Thesis, Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, 2002.
[11] B. Smith, T. Zhengnian, M.W. Johnson, S. Pourmehdi, M.M. Gazdik, J.R. Buckett and P.H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. vol. 45, pp. 463 -475, 1998.
[12] G.E. Loeb, F.J.R. Richmond, D. Olney, T. Cameron, A.C. Dupont, K. Hood, R.A. Peck, P.R. Troyk and H. Schulman, “BIONTM. Bionic neurons for functional and therapeutic electrical stimulation,” IEEE Proc. Engineering in Medicine and Biology Society, vol. 5, pp. 2305 –2309, 1998.
[13] Y. Hao and K. Najafi, ”Circuitry for a wireless microsystem for neural recording microprobes,” IEEE Proc. Engineering in Medicine and Biology Society, vol. 1, pp. 761-764, 2001.
[14] G. Gudnason, J.H. Nielsen, E. Bruun and M. Haugland, “A distributed transducer system for functional electrical stimulation,” IEEE Electronics, Circuits and Systems 8th Int. Conf., vol.1, pp.397-400, 2001.
[15] J.G. Webster, Medical instrumentation application and design, Third Edition John Wiley & Sons Inc., 1998.
[16] Z. Tang, B. Smith, J.H. Schild, and P.H. Peckham, “Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator,” IEEE Trans. Biomed. Eng., vol. 42, pp. 524 –528, 1995.
[17] G.E. Loeb, A. Raymond, H. William, H. Kevin, ”BION System for Distributed Neural Prosthetic Interfaces,” http://ami.usc.edu.
[18] A. C. Dupont and S. D. Bagg, ”Clinical trials of BION injectable neuromuscular stimulators,” Proc., IFESS-01 Cleveland OH, June 22-26, 2001.
[19] P. R. Troyk and M. A. K.Schwan, “Closed-loop class E transcutaneous power and data link for MicroImplants,” IEEE Trans. Biomed. Eng., vol. 39, pp. 589-599, 1992.
[20] P. R. Troyk and M. A. K.Schwan, “Closed-loop class E transcutaneous power and data link for MicroImplants,” IEEE Trans. Biomed. Eng., vol. 39, pp. 589-599, 1992.
[21] C. M. Zierhofer, “A class-E tuned power oscillator for inductive transmission of digital data and power,” IEEE Proc. 6th Conf. Electrotechnical, vol. 1, pp. 789-792, 1991.