簡易檢索 / 詳目顯示

研究生: 劉東育
Liu, Tong-yu
論文名稱: 室溫製作多孔性氧化鋁薄膜技術與應用
Fabrication of Porous Anodic Alumina (PAA) Films at Room Temperature and Its Application
指導教授: 鍾震桂
Chung, Chen-kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 95
中文關鍵詞: 焦耳熱脈衝電壓陽極氧化鋁室溫
外文關鍵詞: Joule heat, pulse voltage, room temperature, Anodic alumina oxide
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討脈衝電位技術於陽極氧化鋁製程的變異分析,討論脈衝
    電壓對孔徑大小、氧化層厚度和孔洞數的影響。不同於一般的直流電壓製程,脈衝電壓在實驗中顯示可以避免焦耳熱效應累積,有較均勻的表面多孔層,並且可在低純度鋁上製作出規則排列的結構。在高純度鋁基材上分別使用脈衝電壓和直流電壓在室溫20 ℃下完成氧化鋁模板,結果顯示在脈衝電壓下鋁基材的表面有較完整和孔洞較佳的均勻性接著在使用低純度鋁在不同的室溫下以直流電壓和脈衝電壓討論溫度的影響,直流電壓在高於25 ℃於低純度鋁上將失效,而脈衝電壓則在室溫30 ℃仍然可以維持奈米孔洞陣列的結構,顯示脈衝對焦耳熱產生的抑制效果。在室溫20 ℃下我們討論脈衝的兩種不同模式正脈衝和正負脈衝,並加入直流電壓討論結果以正負脈衝的效果最佳。脈衝電壓為一新穎且帶來有效率、低成本的一種方式應用陽極氧化鋁製程,以草酸濃度和脈衝電壓在脈衝製程對氧化鋁模板結構的影響在這裡已經被討論。濃度的提高可以輔助脈衝製程有更加的孔洞陣列,但隨著電壓上升,電場輔助溶解的焦耳熱就會明顯的增加。以田口實驗分析的方式讓我們更進一步了解脈衝特性應用於不同需求的陽極氧化鋁結構,並以定量的方式以四種參數:脈衝電壓週期、電壓責任週期時間、脈衝電壓與草酸濃度去分析對孔徑大小、多孔層厚度和孔洞數的影響。

    Abstract
    This thesis focus on the parameter variations of anodic alumina oxide (AAO) process by applying pulse voltage. The effects of pore diameter, layer thickness and number of pores were further discussed. The main contribution is that pulse voltage suppresses the joule heat generation in the interface between alumina substrate and oxide layer. Moreover, highly ordered nano-structure can be obtained by means of low purity alumina foils.
    The successful AAO template on high purity alumina substrate (99.997%) at room temperature (20 ℃) were both obtained by DC and pulse mode. It shows that pulse mode has more uniform pore array the DC one. And then, we use pulse and DC voltage on low purity alumina (99%) at different room temperature (20 ℃~30 ℃). The results show the ability of joule heat suppression in pulse mode and obtains the successful AAO template in high temperature (30 ℃) environment, but valid AAO template in DC mode. In pulse voltage, there are two different modes: positive pulse voltage and positive / negative mixed pulse voltage, we demonstrate the individual characteristics among them.
    Pulse AAO method is a novel technique in anodization and brings more convenience and low cost way than usual. The effect of oxalic acid concentration and pulse voltage in anodization process were also discussed in this paper. Finally, we using taguchi method to analyze the affection of parameters in anodization process.

    總目錄 摘要 I Abstract III 誌謝 IV 表目錄 VII 圖目錄 VIII 符號表 XI 第一章 緒論 - 1 - 第二章 文獻回顧 6 2-1 陽極氧化鋁形態 6 2-2 陽極氧化原理 7 2-3 陽極氧化成長機制 9 2-4 Burning 和 powering 效應 11 2-5 陽極製程參數影響 13 2-5-1 溫度影響 13 2-5-2 陽極電壓影響 14 2-5-3 電解液草酸濃度的影響 15 2-6 阻擋層消除(Barrier layer thinning) 16 2-7 陽極氧化製程討論 18 2-7-1 傳統的兩階段陽極處理 18 2-7-2 多孔性氧化鋁模板成長在矽基材上的製程 19 2-7-3 硬式陽極處理 (Hard anodization) 19 2-7-4 三階段的陽極處理 21 2-7-5 脈衝電壓製作多孔性氧化鋁模板 22 第三章 實驗方法與步驟 24 3-1 實驗流程 24 3-2 實驗規畫 25 3-3 陽極氧化過程 26 3-4 田口分析 27 3-5 實驗設備 29 3-6 實驗材料 31 第四章 結果與討論 35 4-1 脈衝電壓模式與電流型式 35 4-2 高溫下的陽極氧化鋁與純度的影響 37 4-2-1 室溫下直流電壓和脈衝電壓在高純度鋁的討論 37 4-2-2 高溫下直流電壓和脈衝電壓在低純度鋁的討論 41 4-3 電壓模式對陽極氧化製程的影響 45 4-4 電壓和草酸濃度對陽極氧化鋁脈衝製程的影響 54 4-5 以田口實驗分析脈衝製程的趨勢 66 第五章 結論與未來工作 85 5-1 結論 85 5-2 未來工作 87 5-3 本文貢獻 88 參考文獻 89 自述 95

    參考文獻
    1. A. Belwalkara, E. Grasinga, W. V. Geertruydenb, Z. Huangc, W. Z. Misioleka, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes”, Journal of Membrane Science, Vol. 319, pp. 192–198, 2008.
    2. Y. C. Stephen, R. K. Peter and K. Linshu, “Nanolithographically defined magnetic structures and quantum magnetic disk”, Journal of Applied Physics, Vol. 79, pp. 6101-6106, 1996.
    3. N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays”, Appl. Phys. Lett., Vol. 82, No. 8, 2003.
    4. F. Keller, M. S. Hunter, and D. L. Robinson, Structural Features of Oxide Coatings on Aluminum”, Joural of the Electrochemical Society, Vol. 100, No. 9,1953
    5. H. Masuda and K. Fukuda,“Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, Vol. 268, No. 5216, pp. 1466-1468, 1995.
    6. H. Masuda and F. Hasegwa, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, J. Electroctro. Soc., vol. 144, No. 5, 1997.
    7. O. Jessensky, F. Muller and U. Go¨sele, Self-organized formation of hexagonal pore arrays in anodic alumina” Applied Physics Letters, Vol.72, No. 109 , 1998.
    8. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Go1sele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule”, Nano Lett., Vol. 2, No. 7, 2002.
    9. X. Zhao, S. K. Seo, U. J. Lee, and K. H. Leez, “Controlled Electrochemical Dissolution of Anodic Aluminum Oxide for Preparation of Open-Through Pore Structures”, Journal of The Electrochemical Society, Vol. 154 ,No. 10, pp. C553-C557, 2007.
    10. I. Vrublevsky, V. Parkoun , J. Schreckenbach, Werner A. Goedel, “Dissolution behaviour of the barrier layer of porous oxide films on aluminum formed in phosphoric acid studied by a re-anodizing technique”, Applied Surface Science, Vol. 252, pp. 5100–5108, 2006.
    11. M. Tian, S. Xu, J. Wang, N. Kumar, E. Wertz, Q. Li, P. M. Campbell,| M. H. W. Chan, and T. E. Mallouk, “Penetrating the Oxide Barrier in Situand Separating Freestanding Porous Anodic Alumina Films in One Step”, Nano Letter., Vol. 5, pp. 697-703, 2005.
    12. M. Tang, J. He, J. Zhou, P. He, “Pore-widening with the assistance of ultrasonic: A novel process forpreparing porous anodic aluminum oxide membrane”, Materials Letters, Vol. 60, pp. 2098–2100, 2006.
    13. A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu,“Fabrication of highly ordered metallic nanowire arrays by electrodeposition”, Applied Physics Letters, Vol. 79, No. 7, 2001.
    14. C. G. Wu, H. L. Lin, N. L. Shau, “Magnetic nanowires via template electrodeposition”, J Solid State Electrochem , Vol. 10, pp. 198–202, 2006.
    15. C. L. Xu, S. J. Bao, L. B. Kong, H. Li, H. L. Li, “Highly ordered MnO2 nanowire array thin films on Ti/Si substrate as an electrode for electrochemical capacitor”, Journal of Solid State Chemistry, Vol. 179, pp. 1351–1355, 2008.
    16. F. Favier, E. Walter, “Michael P. Zach, Thorsten Benter, Reginald M. Penner,“Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays”, Seience, Vol. 293 , 2001.
    17. L. Juhász , J. Mizsei, “Humidity sensor structures with thin film porous alumina for on-chip Integration”, Thin Solid Films, 2009.
    18. H. Masuda, H. Asoh, M. Watanabe,K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina”, Adv. Mater, Vol. 13, No. 3, 2001.
    19. J. M. Montero-Moreno, M. Sarret, and C. Müller, “Some Considerations on the Influence of Voltage in Potentiostatic Two-Step Anodizing of AA1050”, Journal of The Electrochemical Society, Vol. 154 (3), pp. C 169-C 174, 2007.
    20. J.M. Montero-Moreno, M. Belenguer, M. Sarret, C.M. Muller, “Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques”, Electrochimica Acta, Vol. 54, pp. 2529–2535, 2009.
    21. G. D. Sulka, W. J. Stepniowski, “ Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures”, Electrochimica Acta, 2009.
    22. G.D. Sulka , K.G. Parkoła, “Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid”, Electrochimica Acta, Vol. 52, pp. 1880–1888, 2007.
    23. D. Lo and R. A. Budiman, “Fabrication and Characterization of Porous Anodic Alumina Films from Impure Aluminum Foils”, Journal of The Electrochemical Society, Vol.154 (1), pp.C 60-C 66, 2007.
    24. C. C. Chen, J. H. Chen and C. G. Chao, “Post-treatment Method of Producing Ordered Array of Anodic Aluminum Oxide Using General Purity Commercial (99.7%) Aluminum”, Japanese Journal of Applied Physics, Vol. 44, No. 3, pp. 1529–1533, 2005.
    25. F. Nasirpouri , M. Abdollahzadeh, M.J. Almasi, N. Parvini-Ahmadi, “A comparison between self-ordering of nanopores in aluminium oxide films achieved by two-and three-step anodic oxidation”. Current Applied Physics, 2009.
    26. C. K. Chung, R. X. Zhou, T. Y. Liu and W. T. Chang, “Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature”, Nanotechnology, Vol. 20, pp. 055301, 2009.
    27. A. D. Juhl, Ph.D., M.Sc, “Theoretical Introduction to Pulse Anodizing”, www.aluconsult.dk.
    28. Z. Wu, C. Richter,b and L. Menon, “A Study of Anodization Process during Pore Formation in Nanoporous Alumina Templates”, Journal of The Electrochemical Society, Vol. 154, pp. E8-E12 , 2007.
    29. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina”, Journal of Applied Physics, Vol. 84, No. 11, 1998.
    30. M. Jung and S. Mho, “Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks”, Applied Physics Letters, Vol. 88, No. 133121, 2006.
    31. 周潤祥, “Fabrication of Porous Anodic Alumina (PAA) Films from Commercial Purity (99%) Al Foils and Its Application to Ni-Co Electrodeposition”, 國立成功大學機械系碩士論文。
    32. L. B. Kong, “Synthesis of Y-junction carbon nanotubes within porous anodic aluminum oxide template”, Solid State Communications. Vol. 133, pp. 527–529, 2005.
    33. S. Anderson, “Mechanism of Electrolytic Oxidation of Aluminum”, Journal of applied physics, Vol. 15, pp. 477-480, 1944.
    34. P. Ye Deng, X. D. Bai, X. W. Chen, and Q. L. Feng, “Anodic Oxidization of Aluminum at High Current Densities and Mechanism of Film Formation”, Journal of The Electrochemical Society, Vol. 151, pp. B284-B289, 2004.
    35. J.M. Montero-Moreno, M. Sarret, C. Müller, “Influence of the aluminum surface on the final results of a two-step anodizing”, Surface & Coatings Technology, Vol. 201, pp. 6352–6357, 2007.
    36. A. Belwalkar, E. Grasing, W. V. Geertruyden, Z. Huang, W.Z. Misiolek, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes”, Journal of Membrane Science, Vol. 319, pp. 192–198, 2008.
    37. R. Grover, K. L. Narasimhan, D. K. Sharma, “Pulsed Anodic Anodisation of Porous Silicon Films”, Journal of Porous Materials, Vol. 7, pp. 377–379, 2000.
    38. A. D. Juhl, Ph.D., M.Sc, “Pulse Anodizing in an Existing Anodizing Line”, www.aluconsult.dk, www.sapa.dk, www.lokalenergi.dk.
    39. H. H. Shih, S. L. Tzou, “Study of anodic oxidation of aluminum in mixed acid”, Surface and Coatings Technology”, Vol. 124, pp. 278–285, 2000.
    40. S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, T. Takahagi, “Ordered Two-Dimensional Nanowire Array Formation Using Self-Organizes Nanoholes of Anodically Oxidized Aluminum”, Jpn. J. Phys, Vol. 36, pp. 791-7795, 1997.
    41. A. Cai, H. Zhang, H. Hua and Z. Zhang, “Direct formation of self-assembled nanoporous aluminium oxide on SiO2 and Si substrates”, Nanotechnology, Vol. 13, pp. 627–630, 2002.
    42. M. Lillo, D. Losic, “Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology”, Journal of Membrane Science, Vol. 327, pp. 11–17, 2009.
    43. J. H. Jeong, S. H. Kim, Y. Choi, and S. S. Kim, “Microstructure of nanopores in AAO templates favoring the growth of nickel nanowires by electrodeposition”, phys. stat. sol. (c),Vol. 4, No. 12, pp. 4429–4432, 2007.
    44. J. H. Yuan, F. Y. He, D. C. Sun, and X. H. Xia, “A Simple Method for Preparation of Through-Hole Porous Anodic Alumina Membrane”, Chem. Mater, Vol. 16, pp. 1841-1844, 2004.
    45. G. Y. Zhao, C. L. Xu, D. J. Guo, H. Li, H. L. Li, “Template preparation of Pt nanowire array electrode on Ti/Si”, Applied Surface Science, Vol. 253, pp. 3242–3246, 2007.
    46. L. Vojkuvka, L. F. Marsal, J. F. Borrull, P. Formentin, J. Pallares, “Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization”, Superlattices and Microstructures, Vol. 44, pp. 577–582, 2008.
    47. Y. Li, Z. Y. Ling, S. S. Chen and J. C. Wang, “Fabrication of novel porous anodic alumina membranes by two-step hard anodization”, Nanotechnology, Vol. 19 , pp. 225604-225409, 2008.

    下載圖示 校內:2014-08-03公開
    校外:2019-08-03公開
    QR CODE