簡易檢索 / 詳目顯示

研究生: 曾怡升
Tzeng, Yi-Sheng
論文名稱: 分子動力學模擬用碳管膜分離甲烷與二氧化碳
Molecular dynamics simulation of CO2/CH4 separation using carbon nanotube membrane
指導教授: 翁政義
Weng, Cheng-I
陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 88
中文關鍵詞: 分離率流率分子動力學奈米碳管薄膜二氧化碳甲烷分離
外文關鍵詞: separation, flux, CO2, CH4, carbon nanotube membrane, molecular dynamics, separation factor, unit atom
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文是以分子動力學模擬甲烷與二氧化碳兩氣體混合物之分離行為,藉以奈米碳管薄膜(carbon nanotube membrane)模型探討之分離效果。所使用氣體間或氣體和碳管的勢能函數為Lennard Jones 12-6 potential,而二氧化碳和甲烷氣體分子都當成單一粒子。主要是探討二氧化碳與甲烷混合物的成分和壓力差對分離率和流率造成的影響,由模擬結果可以發現當壓力差的增加,會使兩氣體流率跟著上升,但是氣體容器甲烷莫耳分率較大的情況下,在高壓力差下會受到傳速較慢的二氧化碳進去較多的影響,使得甲烷流率趨緩。另外,對於純化甲烷氣體,氣體容器內甲烷莫耳分率必須在0.6到0.9之間,而當甲烷氣體的莫耳分率在0.7與0.3、壓力差大小為分別為40 bar與30 bar時,對甲烷和二氧化碳有最好的分離率,可以得到較好的分離效果。也就是說,在甲烷莫耳分率0.7、壓力差30 bar,利用奈米碳管薄膜分離天然氣,可以得最好的純化甲烷的效果,使能源利用得到最有效率的使用。

      Molecular dynamics simulations are used to investigate transport and separation of CO2 and CH4 mixture in carbon nanotube. It is simulated in carbon nanotube membrane by molecular dynamics. The gas-gas and gas-carbon interactions were described using a Lennard-Jones 12-6 type potential, and two gases were represented as hard sphere. Our outcomes explore the performance of membrane for mixtures of CO2 and CH4 as a function of the composition of the feed gases and pressure gradient across carbon nanotube. The results indicate that as the pressure gradient increases for a fixed permeate pressure, the fluxes of two gas increase, but the CH4 flux increases slowly in high pressure gradient when the CH4 mole fraction is high. Because the many CO2 molecules which are less mobile flow into carbon nanotube in high pressure gradient, the CH4 flux increases slowly. We find that the work for purifying CH4 must be in a rage which is from 0.6 to 0.9 mole fraction of CH4. The CO2/CH4 mixture has the maximum and minimum separation factor at 0.3 mole fraction of CH4 and 40 bar of pressure gradient and 0.7 mole fraction of CH4 30 bar of pressure gradient, relatively and the minimum separation factor is optimum for purifying CH4. In other words, natural gas has best separation effect in carbon nanotube membrane at 0.7 mole fraction of CH4 and 30 bar of the pressure gradient. It offers advantages such as a low energy costs and environmental benignity.

    中文摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第1章 緒論 1 1.1 研究背景 1 1.1.1 薄膜種類 2 1.1.2 奈米碳管薄膜 4 1.1.3 微孔下的傳輸機制 6 1.2 研究目的 10 1.3 文獻回顧 12 1.4 本文架構 14 第2章 分子動力學理論 16 2.1 勢能函數 16 2.1.1 CO2-CO2和CH4-CH4間的作用勢能函數 18 2.1.2 CO2-CH4 C-CO2 C-CH4間的作用勢能函數 20 2.2 運動方程式 21 2.2.1 Verlet algorithm 22 2.2.2 Leap Frog algorithm 23 2.2.3 Velocity Verlet algorithm 24 2.2.4 Gear Predictor-Corrector algorithm 25 第3章 分子動力學數值模擬方法 30 3.1 物理模型 30 3.2 模擬參數與無因次化 31 3.3 邊界條件 34 3.4 初始條件 36 3.5 截斷半徑法 39 3.6 氣體等壓容器之模擬 42 3.7 氣體分離模擬流程圖 44 第4章 模擬結果分析與討論 46 4.1 尺寸效應 46 4.2 改變壓力差對不同莫耳分率CO2/CH4的影響 51 4.2.1 CH4莫耳分率0.5 51 4.2.2 CH4莫耳分率0.3 56 4.2.3 CH4莫耳分率0.1 60 4.2.4 CH4莫耳分率0.7 64 4.2.5 CH4莫耳分率0.9 68 4.3 莫耳分率對流率及分離率的影響 72 4.3.1 莫耳分率對CO2流率的關係 72 4.3.2 莫耳分率對CH4流率的關係 73 4.3.3 莫耳分率對分離率的關係 75 第5章 結論與建議 80 5.1 結論 80 5.2 建議與未來展望 82 參考文獻 83 自述 88

    [1]經濟部工業局,以薄膜回收二氧化碳之技術手冊,1992。
    [2]Y. Seo, S. Kim, S. U. Hong, “Highly selective polymeric membranes for separation,” Polymer 2006, Vol. 47, pp. 4501-4504.
    [3]S. Sridhar, R. Suryamurali, B. Smitha, T. M. Aminabhavi, “Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation,” Colloids and Surfaces A 2007, Vol. 297, pp. 267-274.
    [4]S. Li, J. L. Faconer, R. D. Noble, “Improved SAPO-34 Membrane for CO2/CH4 Separations,” Advanced Materials 2006, Vol. 18, pp. 2601-2603.
    [5]L. M. Robeson, “Correlation of separation factor versus permeability for polymeric membranes,” Journal of Membrane Science 1991, Vol. 62, pp. 165-185.
    [6]B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L. G. Bachas, “Aligned Multiwalled Carbon Nanotube Membranes,” Science 2004, Vol. 303, pp. 62-65.
    [7]J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, O. Bakajin, “Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes,” Science 2006, Vol. 312, pp. 1034-1037.
    [8]D. S. Sholl, J. K. Johnson, “Making High-Flux Membranes with Carbon Nanotubes,” Science 2006, Vol. 312, pp. 1003-1004.
    [9]A. I. Skoulidas, D. M. Ackerman, J. K. Johnson, D. S. Sholl, “Rapid transport of gases in carbon nanotubes,” Physical Review Letters 2002, Vol. 89, No. 18, pp. 185901.
    [10]R. D. Noble, S. A. Stern, Membrane separations technology principles and applications, 1999.
    [11]黃盟欽,碳分子篩/氧化鋁複合膜之製備及特性之研究,國立成功大學化學工程研究所碩士論文,1994。
    [12]胡蒨傑,自由體積及氣體-高分子交互作用對高分子薄膜氣體吸附與傳輸性質之影響,中原大學化學工程學系博士學位論文,1994。
    [13]W. Jia, S. Murad, “ Molecular Dynamics Simulations of Gas Separations Using faujasite-type Zeolite Membranes,” Journal of Chemical Physics, Vol. 120, pp. 4877-4885.
    [14]L. Xu, T. T. Tsotsis, M. Sahimi, “nonequilibrium molecular dynamics simulation of transport and separation of gases in carbon nonopores. I. Basic Result,” Journal of Chemical Physics 1999, vol. 111, No. 7, pp. 3252-3264.
    [15]L. Xu, M. G. Sedigh, T. T. Tsotsis, M. Sahimi, “Nonequilibrium molecular dynamics simulation of transport and separation of gases in carbon nanopores. II. Binary and ternary mixtures and comparison with the experimental data,” Journal of Chemical Physics 2000, Vol. 112, No. 2, pp. 910-922.
    [16]M. Firouzi, K. M. Nezhad, T. T. Tsotsis, Muhammad Sahimi, “Molecular dynamics simulations of transport and separation of carbon dioxide-alkane mixtures in carbon nanopores,” Journal of Chemical Physics 2004, Vol. 120, No. 17, pp. 8172-8185.
    [17]D. Cao, J. Wu, “Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide,” Carbon 2005, Vol. 43, pp. 1364-1370.
    [18]J. M. Haile, Molecular Dynamics Simulation, John Wiley & Sons, New York, 1997.
    [19]D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
    [20]J. M. Goodfellow et al., Molecular Dynamics, CRC Press, Boston, 1990.
    [21]M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science, London, 1991.
    [22]D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996.
    [23]D. W. Heermann, Computer Simulation Method, Springer-Verlag, Berlin, 1990.
    [24]P. Jung, Landoldt-Börnstein, New Series Ⅲ/25 ed H Ullmaier Springer, Berlin, pp. 1-87, 1991.
    [25]Uhlhorn, R.J.R, Huis in’t Veld, M.B.J.H., K. and Burggraaf, A. J. (1989a). J. Mater. Sci. Lett., 8:1135.
    [26]Uhlhorn, R.J.R., Huis in’t Veld, M.B.J.H., Keizer, K. and Burggraaf, A. J. (1989b). proceedings of FICIM’89, Montpellier, France, pp. 323-28.
    [27]Uhlhorn, R.J.R., Keizer, K. and Burggraaf, A. J. (1989c). J. Membr. Sci., 46:225.
    [28]Uhlhorn, R.J.R., Keizer, K. and Burggraaf, A. J. (1989d). In: advances in Reverse Osmosis and Ultrafiltration (T. Matsuura and S. Sourirajan, Eds.)., pp. 239-259.
    [29]Z. Mao, S. B. Sinnott, “Separation of Organic Molecular Mixtures in Carbon Nanotubes and Bundles: Molecular Dynamics Simulations,” Journal of Physical Chemistry B 2001, Vol. 105, pp. 6916-6924.
    [30]W. Jia, S. Murad, “Separation of gas mixtures using a range of zeolite membrane,” The Journal of Chemical Physics 2005, Vol. 122, pp. 234708.
    [31]J. M. D. MacElroy, M. J. Boyle, “Nonequilibrium molecular dynamics simulation of a model carbon membrane separation of CH4/H2 mixtures,” Chemical Engineering Journal 1999, Vol. 74, pp. 85-97.
    [32]A. M. Vieira-Linhares, N. A. Seaton, “Non-equilibrium molecular dynamics simulation of gas separation in a microporous carbon membrane,” Chemical Engineering Science 2003, Vol. 58, pp. 4129-4136.
    [33]L. Xu, M. Sahimi, T. T. Tsotsis, “Nonequilibrium molecular dynamics simulations of transport and separation of gas mixtures in nanoporous materials,” Physical Review E 2000, Vol. 62, No. 5, pp. 6942-6948.
    [34]H. Takaba, K. Mizukami, M. Kubo, A. Stirling, A. Miyamoto, “The effect of gas molecule affinities on CO2 separation from the CO2/N2 gas mixture using inorganic membranes as investigated by molecular dynamics simulation,” Journal of Membrane Science 1996, Vol. 121, pp. 251-259.
    [35]G. A. Sznejer, Irena Efremenko, Moshe Sheintuch, “Carbon Membranes for High Temperature Gas Separation: Experiment and Theory,” AIChE Journal 2004, Vol. 50, No. 3, pp. 596-610.
    [36]S. Sridhar, B. Smitha, M. Ramakrishna, T. M. Aminabhavi, “Modified poly (phenylene oxide) membranes for the separation of carbon dioxide from methane,” Journal of Membrane Science 2006, Vol. 280, pp. 202-209.
    [37]Q. Liu, T. Wang, J. Qiu, Y. Cao, “A novel carbon /ZSM-5 nanocomposite membrane with high performance for oxygen/nitrogen separation,” Chemical Communications 2006, Vol. 11, pp. 1230-1232.
    [38]A. I. Skoulidas, D. S. Sholl, J. K. Johnson, “Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes,” The Journal of Chemical Physics 2006, Vol. 124, pp. 054708.
    [39]G. Arora, S. I. Sandler, “Air separation by single wall carbon nanotubes: Mass transport and kinetic selectivity,” The Journal of Chemical Physics 2006, Vol. 124, pp. 084702.
    [40]G. Arora, S. I. Sandler, “Mass Transport of O2 and N2 in Nanoporous Carbon (C168 Schwarzite) Using a Quantum Mechanical Force Field and Molecular Dynamics Simulations,” Langmuir 2006, Vol. 22, pp.4620-4628.

    下載圖示 校內:立即公開
    校外:2007-08-03公開
    QR CODE