簡易檢索 / 詳目顯示

研究生: 黃怡菁
Huang, Yi-Jin
論文名稱: 可應用於12GHz陣列雷達之設計與實現
The Design and Fabrication Applicable to 12GHz Array Radar
指導教授: 王永和
Wang, Yeong-Her
洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 91
中文關鍵詞: 混頻器移相器衰減器功率放大器濾波器陣列雷達
外文關鍵詞: power amplifier, filter, mixer, phase shifter, attenuator, array radar
相關次數: 點閱:185下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗以RO3003基板設計與實現一個操作於12GHz之陣列雷達模組,包含混頻器、濾波器、衰減器、移相器、功率放大器。一開始採用陶瓷基板製程實現電路,但因濺鍍機機台在陶瓷基板製程技術尚未成熟,故以RO3003基板實現。RO3003基板介電常數=3,厚度=10mil,金屬層高度=0.1mil,介電常數損耗約=0.00136。
      濾波器中心頻率12GHz,通過損耗S21=9.08dB,迴返損耗S11=11.1dB。混頻器是以LO=9.6GHz,輸入功率=10dBm,加上IF=2.4GHz,輸入功率=0dBm,偏壓於VDS=4V,IDS=25mA,得到RF=12GHz,輸出功率=11dBm。衰減器操作於12GHz,偏壓0~1.2V,通過損耗S21有8.301dB的衰減。移相器中心頻率12GHz,偏壓0~8V時有82.51˚之相位差。功率放大器操作於12GHz,偏壓VDS=4V,IDS=25mA下,通過損耗S21=3.762 dB,迴返損耗S11=7.056 dB,但於11.71GHz時有較好之增益,通過損耗S21=6.831 dB,迴返損耗S11=7.110 dB。
      整體量測結果:頻譜分析於高頻RF 12GHz輸出功率=-19dBm,LO 9.6GHz輸出功率=-21dBm,IF 2.4GHz輸出功率=-25dBm。相位於12GHz控制偏壓0~8V通過損耗位移度數從-170.0˚~-9.64˚,共位移160.36˚。衰減損耗控制偏壓0~1.2V通過損耗從20.217dB衰數到27.210dB共衰數6.993dB。

      This research is to design and realize a 12GHz having phase shifting and attenuating function array radar module, it includes mixer, filter, attenuator, phase shifter and power amplifier. We use the ceramic board process to realize the circuit in the beginning, but the sputter process in ceramic board isn’t mature yet, so we complete the circuit in RO3003 board. The dielectric constant is equal to 3, the board thickness is equal 10mil, the metal thickness is equal to 0.1mil, and the dielectric loss is around 0.00136.
      The filter operates at 12GHz, the insertion loss S21 is equal to 9.08dB, and the reflection loss S11 is equal to 11.1dB. The mixer LO input frequency is equal to 9.6GHz, input power is equal to10dBm, IF input frequency is equal to2.4GHz, input power is equal to 0dBm, the bias VDS is equal to 4V, and IDS is equal to 25mA. Then we can get RF frequency equal to 12GHz, and output power equal to -11dBm. The attenuator operates at 12GHz, bias voltage range is 0~1.2V, insertion loss S21 has attenuation equal to 8.301dB. The phase shifter center frequency is equal to 12GHz, bias voltage range is 0~8V, which has the phase shift equal to 82.51˚. The power amplifier operates at 12GHz, and the bias VDS is equal to 4V,IDS is equal to 25mA, insertion loss S21 is equal to 3.762 dB, reflection loss S11 is equal to 7.056 dB; but it has better gain at 11.71GHz, insertion loss S21 is equal to 6.831 dB, reflection loss S11 is equal to 7.110 dB.
      The total measurement result: frequency spectrum analysis at RF 12GHz output power is equal to -19dBm, LO 9.6GHz output power is equal to -21dBm, if 2.4GHz output power is equal to -25dBm. If controlling the phase shifter bias voltage range within 0~8V, we can get the insertion loss phase shift degree at 12GHz from -170.0˚~-9.64˚, and then the total shifting degree is equal to 160.36˚. If we control the attenuator bias voltage range within 0~1.2V, the insertion loss from -20.217dB to -27.210dB, and then the total will be 6.993dB.

    第一章 緒論 1.1 背景簡介 1 1.2 研究目的 2 第二章 設計架構 2.1 緒論 3 2.2 設計突破 3 2.3 架構組織 4 2.4 設計規格 4 2.5 設計及製作流程 2.5.1 設計流程 5 2.5.2 製程流程 7 2.5.3 RO3003基板組裝流程 8 2.6 設計方式及考量 9 2.7 製作方式及考量 9 2.8 組裝方式及考量 13 2.9 量測方式及考量 14 第三章 濾波器 3.1 緒論 16 3.2 基本原理 3.2.1 平行耦合半波長共振濾波器 16 3.2.2 髮夾式帶通濾波器 19 3.3 設計規格 22 3.4 設計方式 23 3.5 設計結果 23 3.6 組裝方式及量測結果 3.6.1 組裝方式 25 3.6.2 量測結果 25 第四章 混頻器 4.1 緒論 27 4.2 基本原理 4.2.1 混頻器基本原理 27 4.2.2 混頻器的類型 30 4.2.2.1 主動式電晶體混頻器 30 4.2.2.2 電阻式電晶體混頻器 30 4.3 設計規格 33 4.4 設計方式 31 4.5 設計結果 33 4.6 組裝方式及量測結果 4.6.1 組裝方式 36 4.6.2 量測結果 37 第五章 可變衰減器 5.1 緒論 39 5.2 基本原理 39 5.2.1 藍吉耦合器 40 5.2.2 PIN二極體 43 5.3 設計規格 45 5.4 設計方式 46 5.5 設計結果 48 5.6 組裝方式及量測結果 5.6.1 組裝方式 50 5.6.2 量測結果 51 第六章 移相器 6.1 緒論 55 6.2 基本原理 55 6.2.1 可變電容二極體 56 6.3 設計規格 59 6.4 設計方式 59 6.5 設計結果 60 6.6 組裝方式及量測結果 6.6.1 組裝方式 61 6.6.2 量測結果 62 第七章 功率放大器 7.1 緒論 66 7.2 基本原理 7.2.1 功率放大器基本原理 66 7.2.2 功率放大器設計方法 67 7.3 設計規格 71 7.4 設計方式 71 7.5 設計結果 73 7.6 組裝方式及量測結果 7.6.1 組裝方式 74 7.6.2 量測結果 75 第八章 整體結果與比較 8.1 整體量測結果 77 8.2 結果比較 84 8.2.1 個別結果比較 84 8.2.2 整體量測 87 第九章 結論 89 參考文獻 90

    [1] 袁帝文, 王岳華, “高頻電路設計 , “高立 , 1997 , pp.128-129.
    [2] J.S. Hong and M.J. Lancaster , “Microstrip Filters for RF/Microwave Applications, ” , WILEY INTER-SCIENCE , pp.121~126 , 2001 .
    [3] G.. Mattaei , L. Young , and E.M. T.Jones , “Microwave Filters , Impedance-Matching Networks , and Coupling Structures ,” Artech House , Norwood , MA , 1980.
    [4] J.S. Hong and M.J .Lancaster , “Microstrip Filters for RF/Microwave Applications, ” , WILEY INTER-SCIENCE , pp.77~106 , 2001 .
    [5] E. G.Cristal and S. Frankel , “Desigh of hairpin-line and hybrid hairpin-parallel-coupled-line filters , ” IEEE MTT-S , Digest , 1971 , 12-13.
    [6] J.S. Hong and M.J. Lancaster , “Microstrip Filters for RF/Microwave Applications, ” , WILEY INTER-SCIENCE , pp.235~272 , 2001 .
    [7] J.S. Wong , “Microstrip tapped-line filter design , ” IEEE Transaction on Microwave Theory and Techniques , Vol. 27 , 1 , 1979 , 44-50.
    [8] David M. Pozar , “Microwave Engineering , ” Addison Wesley , 1990.
    [9] J. Lange , “ Interdigitated stripline quadrature hybrid , ” , IEEE Transaction on Microwave Theory and Techniques , Vol.17 , No.12 , Dec.1969 , pp.1150-1151.
    [10] R. Waugh and D. LaCombe , “Unfolding the Lange coupler , ” IEEE Transaction on Microwave Theory and Techniques , Vol.20 , No.11 , Nov.1972 , pp.777-779.
    [11] D.D. Paolino , “Design more accurate interdigital couples , ” Microwaves , Vol.15 , No.5 , May 1976 , pp.34-38.
    [12] 張盛富, 戴明鳳, ”無線通位之射頻被動電路設計 , ” 全華科技圖書 , April , 1997 , pp.7-24~25.
    [13] D.H. Schrader , “ Microstrip Circuit Analysis ,” Prentice Hall , 1995
    [14] L. Young , “ The analytical equivalence of TEM-mode directional couplers and transmission-line stepped-impedance filters , ” Proc.IEEE , Vol.110 , No.2 , Feb.1963 , pp.275-281
    [15] C.H. Fooks and R.A. Zakarevicius , “ Microwave Engaging Using Microstrip Circuits , ” Prentice Hall , 1990.
    [16] T. G. Bryant and J. A. Weiss , “Normal mode impedance of a coupled pair of microstrip transmission lines , ” in G-MTT Int. Microwave Symp. Dig., May 1968 , pp.117–122.
    [17] J. White , Semiconductor Control , Artech House , Dedham , May 1974 , pp.39-66.
    [18] E.C. Niehenke,; DiMarco, V.V.; Friedberg, A. “Linear Analog Hyperabrupt Varactor Diode Phase Shifters , ” Microwave Symposium Digest, MTT-S International , Volume: 85 , Issue: 1 , Jun 1985 , pp.657-660.
    [19] D.E. Dawson , A.C. Conti , S.H. Lee , G.F. Shade , and L.E. Dickens , “ An Anafog X-Band Phase Shifter ,” IEEE 1984 Microwave and Millimeter Wave Monolithic Circuits Symposium , Digest of Papers , pp. 6-10
    [20] B. Ulriksson , “ Continuous Varactor-Diode Phase Shifter With Optimized Frequency Response , ” IEEE Transaction on Microwave Theory and Techniques , Vol. 27 , July 1979 , pp. 650-654.
    [21] S. Hopfer , “Anafog Phase Shifter for 8-18 GHz , ” Microwave J , Mar 1979 , pp. 48-50.
    [22] R.K. Mains , G.I. Haddad , and D.F. Peterson , “ Investigation of Broad-Band , Linear Phase Shifters Using Optimum Varactor Diode Doping Profiles ,” IEEE Transaction on Microwave Theory and Techniques , Vol. 29 , Nov 1981 , pp. 1158-1164.
    [23] R.V. Garver , “360 Degree Varactor Linear Phase Modulator , ” IEEE Transaction on Microwave Theory and Techniques , Vol. 17 , Mar 1969 , pp. 137-147.

    下載圖示 校內:2005-06-28公開
    校外:2005-06-28公開
    QR CODE