| 研究生: |
紀鈞齡 Chi, Chun-Ling |
|---|---|
| 論文名稱: |
杏福AI:智慧加持下健檢報告流程轉型之實證研究 Hsing-Fu AI: An Empirical Study on the Smart Transformation of the Health Checkup Report Workflow |
| 指導教授: |
李昇暾
Li, Sheng-Tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 人工智慧(AI) 、健康檢查 、數位轉型 、價值創新 、護理人力配置 |
| 外文關鍵詞: | Artificial Intelligence (AI), Health Checkup, Digital Transformation, Value Innovation, Nursing Manpower Allocation |
| 相關次數: | 點閱:17 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對護理人力短缺、人口老化帶來的醫療需求增加,以及營運效率瓶頸等關鍵挑戰,醫療機構日益採用AI技術來簡化行政流程,提升整體服務品質。本研究旨在探討人工智慧(AI)技術在健康檢查報告流程中的轉型效果,以台灣南部某區域教學醫院(匿名為S醫院)為研究場域。
研究採用質性研究方法,透過半結構式訪談,深入了解醫療管理者、臨床醫師與一線護理人員等多方利害關係人的實務觀點。理論框架基於數位轉型理論與價值創新(ERRC Grid)架構,探討AI導入對於營運效率、人力資源配置與競爭優勢的影響。
研究結果發現,AI的導入顯著縮短了健檢報告的產出時間,降低行政工作負擔,並提升報告的準確性與一致性。此轉變有效縮短了病患等待時間,改善了報告溝通清晰度,大幅提升受檢者滿意度與服務競爭力。此外,護理人力得以重新配置至更具附加價值的工作,如健康諮詢與顧客關係管理,有效緩解護理人力短缺的問題。
綜合上述研究發現,AI技術不僅能優化健檢流程內部作業,更能成為醫療機構長期敏捷性與永續發展的重要策略資源。醫療機構在考量AI導入時應強化跨部門協作,持續推動員工AI技能培訓,並建構完善的法規架構以管理倫理與隱私議題。,期望透過此研究提供醫療產業導入AI技術的重要策略參考,促進創新、提升品質,進而增強市場競爭力。
Facing key challenges such as nursing manpower shortages, rising medical demands due to population aging, and operational efficiency bottlenecks, healthcare institutions are increasingly adopting artificial intelligence (AI) technologies to streamline administrative tasks and improve overall service quality. This study explores the transformative impact of AI on the health examination report process, using a regional teaching hospital in southern Taiwan (anonymously referred to as S Hospital) as the research site.
Using a qualitative research approach, the study conducted semi-structured interviews to gain insights from healthcare administrators, clinical physicians, and frontline nursing staff. The theoretical framework is grounded in digital transformation theory and the value innovation model (ERRC Grid), analyzing how AI affects operational efficiency, human resource allocation, and competitive advantage.
Findings show that AI significantly reduces the time required to produce health reports, lowers administrative workloads, and improves report accuracy and consistency. These changes shorten patient wait times, enhance report clarity, and increase satisfaction and service competitiveness. Nursing staff can be reallocated to higher-value tasks such as health consultations and customer relationship management, helping ease the staffing shortage.
Overall, AI not only enhances internal health check-up processes but also acts as a strategic asset for healthcare institutions' agility and sustainability. To maximize AI's benefits, organizations should strengthen cross-departmental collaboration, promote ongoing AI training, and build robust legal frameworks to manage ethical and privacy concerns. This study offers strategic insights for the medical sector to adopt AI, foster innovation, improve quality, and boost market competitiveness.
全球醫療採購網(2024)。2025 全球頂尖智慧醫院評比!臺灣 8 間醫院納入全球智慧醫院。https://ibmi.taiwan-healthcare.org/zh/bio_highlights_detail.php?REFDOCID=0sk35xiuu98tmjfp,搜尋時間 : 2025年3月20號。
衛生福利部(2023)。112年全民健康保險醫療統計年報。中華民國衛生福利部。
衛生福利部護理及健康照護司. (2023). 從數字了解世界與台灣護理人力。衛生福利部。https://nurse.mohw.gov.tw/cp-218-1901-7ed65-2.html,搜尋時間:2025年3月12日。
江東亮(2002)。臺灣醫療保健支出之趨勢分析。台灣衛誌,21(4),157-163。
江姿慧、陳雅琳、吳美慧、李崇豪(2021)。縮短寄發健康檢查報告時間與報告內容整合之實務經驗分享。台灣家庭醫學雜誌,31(1),53–60。
李素慧、林金鵬(2008)。臺灣全民健保與健康照護體系之反思與前瞻。國立臺灣大學出版中心。
李素慧、林金鵬(2011)。國家衛生醫療支出與 GDP 暨人口結構關係。華醫學報,34,49-76。
林坤輝(2013)。新創骨科醫療器材公司的競爭策略分析與建議(碩士論文)。國立臺灣大學。
國立臺灣大學醫學院附設醫院. (2024). 2023年臺大醫院年報(初版)。吳明賢(發行人);王亭貴(總編輯);林美淑、陳清芬、倪嘉慧(執行編輯)。臺北市:國立臺灣大學醫學院附設醫院。
國泰醫療財團法人. (2021). 智慧醫院建設成果報告。國泰醫療財團法人。取自 https://www.cgh.org.tw/ec99/rwd1320/category.asp?category_id=2400,搜尋時間:2025年3月12日。
張哲豪(2025)。AI幫忙顧長輩:探索大型語言模型在高齡照護的應用。財團法人資訊工業策進會 FIND產業情報網。https://www.find.org.tw/index/indus_trend/browse/b11f1cf9a57130b0b054cc67b24de36c,搜尋時間 : 2025年3月20號。
梁育文(2018)。台灣一般護理之家評鑑:十年回顧與展望。台灣公共衛生雜誌,37(2),140–152。
陳冠君(2023)。感性的官僚:健保署人員的行政實作與倫理(碩士論文)。國立臺灣大學文化創意事業管理學系。
陳婉如(2019)。二代健保後台灣地區醫療院所經營績效之分析(碩士論文)。南華大學機構典藏。
陳翊綾(2012)。台灣地區成立牙醫專科醫院可行性之研究(碩士論文)。國立臺灣大學管理學院碩士在職專班高階公共管理組。
陳錫銘、劉敦仁(2007)。臺灣醫療旅遊產業創新服務之策略研究(碩士論文)。國立陽明交通大學管理學院高階主管管理碩士學程。
曾文宏(2017)。人口老化下的居家醫療照護整合網絡—以嘉義地區為例(碩士論文)。國立臺灣大學公共衛生學院公共衛生碩士學位學程。
黃勢璋(2023)。醫療照顧服務業導入AI人工智慧之影響與因應。《台灣勞工季刊》,59,28–33。中華經濟研究院。
黃鴻茗、宋鎮照(2013),〈台灣地區醫院的消逝對社區醫療安全網絡的影響〉。《台灣社區工作與社區研究學刊》3(1): 1-22。
潘信良(2022)。台灣復健專科醫師人力需求推估(碩士論文)。國立臺灣大學學位論文財務金融組。
蔡惠敏(2022)。藝文活動對護理人員工作紓壓之研究-以新竹捐血中心為例(碩士論文)。南華大學文化創意事業管理學系。
鄭慧姬、馬彥琳(2015)。邊緣化再邊緣化:談南部老年思覺失調症醫療安置之需要。興國學報,5,P206-212。
林朝雄(2023)。台灣醫療器材市場進入策略-骨科醫材公司個案(碩士論文)。國立陽明交通大學生技醫療經管理系。
陳玟君(2022)。運用創新擴散理論探討醫療機構導入數位護理科技對使用者之影響(碩士論文)。國立陽明交通大學護理學系。
Anney, V. N. (2014). Ensuring the quality of the findings of qualitative research: Looking at trustworthiness criteria. Journal of Emerging Trends in Educational Research and Policy Studies, 5(2), 272–281.
Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: Toward a next generation of insights. MIS Quarterly, 37(2), 471–482.
Birt, L., Scott, S., Cavers, D., Campbell, C., & Walter, F. (2016). Member checking: A tool to enhance trustworthiness or merely a nod to validation? Qualitative Health Research, 26(13), 1802–1811.
Bleustein, C., & Rothschild, D. B. (2014). Wait times, patient satisfaction scores, and the perception of care. The American Journal of Managed Care, 20(5),393-400.
Bowen, G. A. (2009). Supporting a grounded theory with an audit trail: An illustration. International Journal of Social Research Methodology, 12(4), 305–316.
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.
Carcary, M. (2009). The research audit trial—enhancing trustworthiness in qualitative inquiry. The Electronic Journal of Business Research Methods, 7(1), 11–24.
Chen, Y.-J., Lin, C.-F., Feng, J.-W., & Chiu, H.-L. (2023). Influencing factors of participation in and satisfaction with elderly health checkups: A cross-sectional study. Frontiers in Public Health, 11, 1104438.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.
Gastaldo, D. (2015). Elements for a qualitative methodology chapter. University of Toronto.
Gulshan, V., Peng, L., Coram, M., et al. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Journal of the American Medical Association (JAMA), 316(22), 2402–2410.
Harris, M., Adnan, A., Irvine, R. E., & Williams, A. (2025). Improving acceptability of mHealth apps—The use of the Technology Acceptance Model to assess the acceptability of mHealth apps: Systematic review. Journal of Medical Internet Research, 27(1), e66432.
He, J., Baxter, S. L., Xu, J., et al. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36.
Hu, H.-Y., Chiu, S.-I., Cheng, C.-C., & Hsieh, Y.-F. (2018). A study on investigating patient satisfaction of medical centers using Taiwan customer satisfaction index in Taiwan. International Journal of Banking, Economics and Finance, 2(7), 001–010.
Jones, B. A., Bekeris, L. G., Nakhleh, R. E., Walsh, M. K., & Valenstein, P. N. (2009). Physician satisfaction with clinical laboratory services: A college of American Pathologists Q-Probes study of 138 institutions. Archives of Pathology & Laboratory Medicine, 133(1), 38–43.
Kim, W. C., & Mauborgne, R. (2015). Blue ocean strategy, expanded edition: How to create uncontested market space and make the competition irrelevant. Harvard Business Review Press.
Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. Sage Publications.
Litjens, G., Kooi, T., Bejnordi, B. E., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.
Litsas, D. C., Paulus, K., Nace, T., Hoadley, A., Zisman Ilani, Y., & Siminoff, L. A. (2025). Culturally appropriate patient provider communication methods for Black women with breast cancer: A scoping review. Supportive Care in Cancer, 33(5), 396.
McBrien, B. (2008). Evidence-based care: Enhancing the rigour of a qualitative study. British Journal of Nursing, 17(20), 1286–1289.
Melville, J., Toon, M., & Doyle, N. (2025). Improving standards in occupational therapy clinical record-keeping. BMJ Open Quality, 14(Suppl 2), A22.
Morse, J. M. (2015). Critical analysis of strategies for determining rigor in qualitative inquiry. Qualitative Health Research, 25(9), 1212–1222.
Niraula, T. P., & Poudel, S. R. (2019). Client satisfaction in health service management in hospitals of Province One Eastern Nepal. Journal of Advanced Academic Research (JAAR), 6(1), 29–45.
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future — Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219.
Price, W. N., & Cohen, I. G. (2019). Privacy in the age of medical big data. Nature Medicine, 25(1), 37–43.
Rajkomar, A., Dean, J., & Kohane, I. (2018). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347–1358.
Ross, J. W., Beath, C. M., & Sebastian, I. M. (2019). Designed for digital: How to architect your business for sustained success. MIT Press.
Singh, H., Meyer, M. J. J., Mansor, N. N. A., Singh, S., & Krubally, M. (2018). The impact of service quality delivery towards customer satisfaction in medical diagnostics laboratory industry. The Turkish Online Journal of Design, Art and Communication (TOJDAC), September 2018 Special Edition, 3054–3064.
Topol, E. J. (2019). Deep medicine: How artificial intelligence can make healthcare human again (1st ed.). Basic Books
Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901.
Wei, Y., Chong, L., & Cui, X. (2024). Validating the effectiveness of an AI algorithm developed for pulmonary TB screening by chest X ray and chest CT: A retrospective study . Chest: The Journal of the American College of Chest Physicians, 166(4 Suppl.), A6427.
Westerman, G., Bonnet, D., & McAfee, A. (2014). Leading digital: Turning technology into business transformation. Harvard Business Review Press.