簡易檢索 / 詳目顯示

研究生: 林姵妤
Lin, Pei-Yu
論文名稱: 溫室氣體排放指標設計及排放效率分析-以歐洲國家為例
Greenhouse Gas Emission Indicator Design and Emission Efficiency Analysis in European Countries
指導教授: 林泰宇
Lin, Tei-Yu
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 42
中文關鍵詞: 熵值法能源消耗效率碳排放指標效率可再生能源消耗效率不可再生能源消耗效率
外文關鍵詞: Entropy method, Energy consumption efficiency, Carbon emission efficiency, Renewable energy consumption efficiency, Non-renewable energy consumption efficiency
相關次數: 點閱:153下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著全球氣候變化,溫室氣體排放已成為了一個不容忽視的問題。本研究採用熵值法(Entropy method)設計碳排放指標,並採用Dynamic Directional Distance Function Data Envelopment Analysis Model(動態方向性距離函數資料包絡分析模型)測量歐盟29個國家2015年至2019年的勞動力效率、固定資產效率、可再生能源消耗效率、不可再生能源消耗效率、碳排放效率和GDP效率。本研究結果如下:(1) CH4的熵權大於CO2的熵權,由此可知, CH4對總碳排放的影響大於CO2。(2)丹麥、希臘、愛爾蘭、盧森堡、馬爾他、瑞典和英國這7個國家的勞動力效率、可再生能源消耗效率、不可再生能源消耗效率、碳排放指標效率、GDP效率和固定資產效率在研究期間是29個國家中位列第一的,亦即他們的投入和產出分配最優。(3)大多數國家的不可再生能源消耗效率比可再生能源消耗效率更高。(4)碳排放效率差的國家在不可再生能源消耗或可再生能源消耗方面的效率也較低。

With global climate change, greenhouse gas emissions are an issue that cannot be overlooked. The entropy method is used in this work to design carbon emission indicators and the Dynamic Directional Distance Function Data Envelopment Analysis Model is used to evaluate the overall efficiency, labor efficiency, fixed capital efficiency, renewable energy consumption efficiency, non-renewable energy consumption efficiency, carbon emissions efficiency and GDP efficiency in 29 EU countries for the period from 2015 to 2019. The results of this research are as follows: (1) CH4 had a greater impact on total carbon emissions than CO2. (2)The overall efficiency value, labor efficiency value, renewable energy consumption efficiency value, non-renewable energy consumption efficiency value, carbon efficiency value, GDP efficiency value and fixed capital efficiency value for Denmark, Greece, Ireland, Luxembourg, Malta, Sweden and United Kingdom were the highest among the 29 countries during the study period. These 7 countries have the optimal input and output allocations. (3) Non-renewable energy consumption in most countries is more efficient than renewable energy consumption. (4) Countries with poor carbon emission efficiency are also inefficient in terms of non-renewable energy consumption or renewable energy consumption.

摘要I ABSTRACT II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章、緒論 1 第一節、研究背景與目的 1 第二節、研究架構 2 第二章、文獻探討 3 第一節、溫室氣體相關文獻 3 第二節、能源效率相關文獻 5 第三節、可再生能源相關文獻 6 第三章、研究方法 11 第一節、資料來源 11 第二節、模型結構和變數 11 第三節、熵權(ENTROPY WEIGHT) 13 第四節、模型 14 第四章、實證分析 17 第一節、熵權(ENTROPY WEIGHT) 17 第二節、敘述統計 19 第三節、總效率分析 24 第四節、勞動力效率分析 27 第五節、不可再生能源消耗效率分析 29 第六節、可再生能源消耗效率分析 31 第七節、固定資產效率分析 33 第八節、GDP效率分析 33 第九節、碳排放指標效率分析 36 第十節、綜合分析 36 第五章、結論和政策建議 38 第一節、結論 38 第二節、政策建議 38 參考文獻 40

Charnes, A.C., Cooper, W. W., Rhodes, E. L. ,1978. Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429-444.
Chen, P. C., Yu, M. M., Chang, C. C., Hsu, S. H., Managi, S. (2015). The enhanced Russell-based directional distance measure with undesirable outputs: numerical example considering CO2 emissions. Omega, 53, 30-40.
Chien, T., & Hu, J. L. (2007). Renewable energy and macroeconomic efficiency of OECD and non-OECD economies. Energy Policy, 35(7), 3606-3615.
Chung, Y. H., Färe, R., Grosskopf, S., 1997. Productivity and Undesirable Outputs: A Directional Distance Function Approach. Journal of Environmental Management, 51, 229–240.
Cooper, W. W., Ruiz, J. L., Sirvent, I., 2007. Choosing weights from alternative optimal solutions of dual multiplier models in DEA. European Journal of Operational Research, 180, 443-458.
Cook, W. D., Kress, M.,1999. Characterizing an equitable allocation of shared costs: A DEA approach. European Journal of Operational Research, 119(3), 652-661.
Cook, W. D., Zhu, J., 2005. Allocation of shared costs among decision making units: A DEA approach. Computers & Operations Research, 32(8), 2171-2178.
Färe, R., Grosskopf, S., 2010. Directional Distance Functions and Slacks-Based Measures of Efficiency. European Journal of Operational Research, 200, 320-322.
Färe, R., Grosskopf, S., 1996. Productivity and intermediate products: a frontier approach. Economics Letters, 50, 65-70.
Färe, R., Grosskopf, S., Norris, S., Zhang, Z., 1994. Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84, 66–83.
Gökgöz, F., & Güvercin, M. T. (2018). Energy security and renewable energy efficiency in EU. Renewable and Sustainable Energy Reviews, 96, 226-239.
Kim, K. T., Lee, D. J., Park, S. J., Zhang, Y., & Sultanov, A. (2015). Measuring the efficiency of the investment for renewable energy in Korea using data envelopment analysis. Renewable and Sustainable Energy Reviews, 47, 694-702.
Li, Y., Chiu, Y. H., & Lu, L. C. (2019). New energy development and pollution emissions in China. International Journal of Environmental Research and Public Health, 16(10), 1764.
Lin, R., 2011. Allocating fixed costs or resources and setting targets via data envelopment analysis. Applied Mathematics and Computation, 217, 6349-6358.
Lin, X., Zhu, X., Han, Y., Geng, Z., & Liu, L. (2020). Economy and carbon dioxide emissions effects of energy structures in the world: evidence based on SBM-DEA model. Science of the Total Environment, 729, 138947.
Lu, L. C., Chiu, S. Y., Chiu, Y. H., & Chang, T. H. (2022). Sustainability efficiency of climate change and global disasters based on greenhouse gas emissions from the parallel production sectors–A modified dynamic parallel three-stage network DEA model. Journal of Environmental Management, 317, 115401.
Puertas, R., & Marti, L. (2021). Eco-innovation and determinants of GHG emissions in OECD countries. Journal of Cleaner Production, 319, 128739.
Ren, F. R., Tian, Z., Chen, H. S., & Shen, Y. T. (2021). Energy consumption, CO2 emissions, and agricultural disaster efficiency evaluation of China based on the two-stage dynamic DEA method. Environmental Science and Pollution Research, 28(2), 1901-1918.
San Cristóbal, J. R. (2011). A multi criteria data envelopment analysis model to evaluate the efficiency of the Renewable Energy technologies. Renewable Energy, 36(10), 2742-2746.
Tone, K. and Tsutsui, M., 2010. Dynamic DEA: A Slacks-based Measure Approach. Omega, 38, 145-156.
UNEP, Emissions Gap Report 2020
https://www.unep.org/emissions-gap-report-2020
Wang, L. W., Le, K. D., & Nguyen, T. D. (2019). Assessment of the energy efficiency improvement of twenty-five countries: a DEA approach. Energies, 12(8), 1535.
Woo, C., Chung, Y., Chun, D., Seo, H., & Hong, S. (2015). The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries. Renewable and Sustainable Energy Reviews, 47, 367-376.
Yu, B., Fang, D., & Meng, J. (2021). Analysis of the generation efficiency of disaggregated renewable energy and its spatial heterogeneity influencing factors: A case study of China. Energy, 121295.
Zhang, Y., Jin, W., & Xu, M. (2021). Total factor efficiency and convergence analysis of renewable energy in Latin American countries. Renewable Energy, 170, 785-795.
Zhou, P., Ang, B. W., & Han, J. Y. (2010). Total factor carbon emission performance: a Malmquist index analysis. Energy Economics, 32(1), 194-201.
Zhu, Q., Wu, J., Li, X., & Xiong, B., 2017. China's regional natural resource allocation and utilization: a DEA-based approach in a big data environment. Journal of Cleaner Production, 142, 809-818.

下載圖示 校內:立即公開
校外:立即公開
QR CODE