| 研究生: |
羅韻綺 Lo, Yun-Chi |
|---|---|
| 論文名稱: |
以體外皮膚培養系統研究微環境對於毛囊之初始發育 Effects of microenvironments on hair follicle initiation using an organotypic skin culture system |
| 指導教授: |
黃玲惠
Huang, Lynn L.H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 頭髮缺失 、毛囊體外培養再生系統 、第一型膠原蛋白 、真皮層等價物 |
| 外文關鍵詞: | alopecia, in vitro organotypic skin culture systems, type I collagen, dermal equivalent |
| 相關次數: | 點閱:175 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
頭髮缺失並不是威脅生命的重要疾病,但對人類的社交及心理所造成的影響則是無庸置疑的。毛囊再生需要經過表皮層細胞與真皮層細胞之間的交互作用,並牽涉到多個分子訊息的傳遞。將皮膚中取得的表皮層細胞及真皮層細胞共同培養在小鼠及人類的皮膚裡,經過交互作用後,可以誘導生成新的毛囊。目前在研究治療毛囊缺失或毛髮生長的藥物面臨一個很大的困境,也就是缺乏一個有效且完善的3D體外篩選平台,所以發展毛囊體外培養再生的系統以篩選治療毛髮缺失藥物的需求實是刻不容緩。我們想要利用3D體外毛囊培養系統模擬皮膚的環境來促進體外毛囊發育及生長;3D體外毛囊培養系統的一部分是將從豬皮分離所得的第一型膠原蛋白與新生小鼠的真皮層細胞混合作為真皮層等價物,然後將新生小鼠的表皮層角質細胞,經過這些細胞的聚合、增生及分化,得以再生出新的毛囊。此外,我們會在適當時間加入hydrocortisone、insulin、progesterone以及WNT10B蛋白質,藉由這些對毛囊發育及生長有影響力的分子,可以提高毛囊再生的效率。我們的目標是建立老鼠體外毛囊再生的模型,並藉由這個模型進一步了解毛囊的生物特性。
Although alopecia is not life threatening, their profound impact on social interactions and on patients’ psychological well being is undeniable. Hair follicle regeneration is a complicated process of epithelial-mesenchymal interaction involving various molecular signals. By mixing cellular components from epidermal and dermal parts of the skin, researchers had established in vivo hair growth models in mice and in human. However, the search for agents that induce hair growth has been severely handicapped by the lack of satisfactory three-dimensional (3D) in vitro screening systems that sufficiently mimic important epithelial-mesenchymal interactions as they occur in human hair follicles. Therefore, pragmatic in vitro organotypic skin culture systems are badly needed. We use a 3D collagen culture system; one part is a dermal equivalent consisting of type I collagen from pig skin and dermal cells from neonatal mice, another part is a layer of epidermal keratinocytes from neonatal mice put on the dermal equivalent, to provide an environment for hair development and growth. By modifying the volume and the collagen concentration of the dermal equivalent and increasing the cell density, we try to optimize the efficiency for cell-cell interaction. We introduce molecules which play an important role in hair follicle development and maturation, such as hydrocortisone, insulin, progesterone into the culture medium to promote the hair regeneration ability. In our system, we observe cells within the culture system go through interaction, proliferation, differentiation and assembly to form spheroid cell aggregates. In another way, using WNT10B proteins with hair inducing ability, we want to increase the number of regenerated hair follicles. Our ultimate goal is to develop an in vitro system to regenerate completely organized and functional hair follicles. The system will also help us to understand the biology of hair follicles.
1. 李德雪, 動物比較組織學. 藝軒圖書出版社, 2004.
2. Hirsinger, E., et al., Role of growth factors in shaping the developing somite. Mol Cell Endocrinol, 1998. 140(1-2): p. 83-7.
3. Morasso, M.I. and M. Tomic-Canic, Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol Cell, 2005. 97(3): p. 173-83.
4. So, P.L. and E.H. Epstein, Jr., Adult stem cells: capturing youth from a bulge? Trends Biotechnol, 2004. 22(10): p. 493-6.
5. Millar, S.E., Molecular mechanisms regulating hair follicle development. J Invest Dermatol, 2002. 118(2): p. 216-25.
6. Schmidt-Ullrich, R. and R. Paus, Molecular principles of hair follicle induction and morphogenesis. Bioessays, 2005. 27(3): p. 247-61.
7. Fernandes, K.J., et al., A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol, 2004. 6(11): p. 1082-93.
8. Delfino-Machin, M., et al., The proliferating field of neural crest stem cells. Dev Dyn, 2007. 236(12): p. 3242-54.
9. Stenn, K.S. and R. Paus, Controls of hair follicle cycling. Physiol Rev, 2001. 81(1): p. 449-494.
10. Jahoda, C.A. and R.F. Oliver, Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro. J Embryol Exp Morphol, 1984. 79: p. 211-24.
11. Matsuzaki, T. and K. Yoshizato, Role of hair papilla cells on induction and regeneration processes of hair follicles. Wound Repair Regen, 1998. 6(6): p. 524-30.
12. Yu, B.D., A. Mukhopadhyay, and C. Wong, Skin and hair: models for exploring organ regeneration. Hum Mol Genet, 2008. 17(R1): p. R54-9.
13. Cadigan, K.M., Wnt-beta-catenin signaling. Curr Biol, 2008. 18(20): p. R943-7.
14. Widelitz, R.B., Wnt signaling in skin organogenesis. Organogenesis, 2008. 4(2): p. 123-33.
15. McMahon, A.P. and A. Bradley, The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell, 1990. 62(6): p. 1073-85.
16. Wodarz, A. and R. Nusse, Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol, 1998. 14: p. 59-88.
17. Klaus, A. and W. Birchmeier, Wnt signalling and its impact on development and cancer. Nat Rev Cancer, 2008(5): p. 387-98.
18. Semenov, M.V., et al., SnapShot: Noncanonical Wnt Signaling Pathways. Cell, 2007. 131(7): p. 1378.
19. DasGupta, R. and E. Fuchs, Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development, 1999. 126(20): p. 4557-68.
20. Chu, E.Y., et al., Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development, 2004. 131(19): p. 4819-29.
21. Andl, T., et al., WNT signals are required for the initiation of hair follicle development. Dev Cell, 2002. 2(5): p. 643-53.
22. Huelsken, J., et al., beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 2001. 105(4): p. 533-45.
23. van Genderen, C., et al., Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev, 1994. 8(22): p. 2691-703.
24. Kobielak, K., et al., Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol, 2003. 163(3): p. 609-23.
25. Kishimoto, J., R.E. Burgeson, and B.A. Morgan, Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev, 2000. 14(10): p. 1181-5.
26. Hamilton, J.B., Patterned loss of hair in man; types and incidence. Ann N Y Acad Sci, 1951. 53(3): p. 708-28.
27. Norwood, O.T., Male pattern baldness: classification and incidence. South Med J, 1975. 68(11): p. 1359-65.
28. Tang, P.H., et al., A community study of male androgenetic alopecia in Bishan, Singapore. Singapore Med J, 2000. 41(5): p. 202-5.
29. Paik, J.H., et al., The prevalence and types of androgenetic alopecia in Korean men and women. Br J Dermatol, 2001. 145(1): p. 95-9.
30. Ellis, J.A., M. Stebbing, and S.B. Harrap, Genetic analysis of male pattern baldness and the 5alpha-reductase genes. J Invest Dermatol, 1998. 110(6): p. 849-53.
31. Cotsarelis, G. and S.E. Millar, Towards a molecular understanding of hair loss and its treatment. Trends Mol Med, 2001. 7(7): p. 293-301.
32. Kaufman, K.D., Androgens and alopecia. Mol Cell Endocrinol, 2002. 198(1-2): p. 89-95.
33. Messenger, A.G. and J. Rundegren, Minoxidil: mechanisms of action on hair growth. Br J Dermatol, 2004. 150(2): p. 186-94.
34. Ito, M., et al., Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature, 2007. 447(7142): p. 316-20.
35. Reddy, S., et al., Characterization of Wnt gene expression in developing and postnatal hair folliclies and indentification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mechanisms of Development,2001. 107: p. 69-82.
36. Havlickova, B., et al., Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions. British Journal of Dermatology, 2004. 151: p. 753-765.
37. Shi, C., et al., Stem cells and their applications in skin-cell therapy. TRENDS in Biotechnology, 2006. 24(1): p. 48-52.
38. Zheng, Y., et al., Organogenesis from dissociated cells : generation of mature cycling hair follicles from skin-derived cells . J Invest Dermatol, 2005. 124: p. 867-876.
39. Ohyama, M., et al., The mesenchymal component of hair follicle neogenesis : background, methods and molecular characterization. Dermatology, 2010. 19: p. 89-99.
40. Stenn, K.S., et al., Controls of hair follicle cycling. Physiological Reviews, 2001. 81(1): p. 449-494.
41. Cotsarelis, G., et al., Gene expression profiling gets to the root of human hair follicle stem cells. J Clin Invest, 2006. 116(1): p. 19-22.
校內:2015-08-31公開