簡易檢索 / 詳目顯示

研究生: 張庭嘉
Chang, Ting-Chia
論文名稱: ZnO奈米顆粒墨水溶液製備應用於光催化和硫化氫氣體感測
Development of ZnO nanoparticles solution for photocatalysis and H2S gas sensor
指導教授: 黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 氧化鋅螢光氧缺陷氣體感測硫化氫ppb等級光催化
外文關鍵詞: Zinc oxide, fluorescence, oxygen deficiency, gas sensing, hydrogen sulfide, ppb level, photocatalysis
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究探討氧化鋅作為一種寬能隙半導體的特性。由於其優異的化學穩定性和熱穩定性,氧化鋅被廣泛用於研究。然而,要進一步提高對氣體的感度和選擇性仍然面臨著巨大的挑戰。因此,在本研究中,我們使用溶膠-凝膠技術合成了氧化鋅奈米顆粒墨水,其中醋酸鋅是前驅物,乙醇是溶劑。我們使用了UV-VIS、XRD、XPS、光致發光(PL)、TEM和EDS技術對合成的氧化鋅奈米顆粒墨水進行了表徵。UV-Vis光譜在340~365 nm波長處呈現特徵吸收峰,表明氧化鋅奈米顆粒墨水具有吸收帶。XRD光譜顯示尖峰,表明氧化鋅具有良好的結晶性。同時,它還顯示製備的奈米顆粒在均勻性和尺寸上具有一致性。我們使用Scherrer公式計算了氧化鋅奈米顆粒墨水的晶粒尺寸。此外,通過水熱合成法進一步提高了ZnO的結晶性。從螢光表現可以觀察到,隨著反應溫度的提高,對應材料的螢光逐漸減少。我們使用TEM和EDS技術研究了形態和元素分析。所有的表徵結果相互關聯。由於氧化鋅可運用於紫外和可見光區域,光催化實驗的結果顯示氧化鋅具有優異的光電特性。此外,在製備的氣敏材料中,濃度以稀釋1/10000倍墨水製備的ZnO在290度的工作溫度下對300 ppb硫化氫氣體表現出高響應,同時對於含有混合氣體的環境表現出對硫化氫的高度選擇性。綜上所述,本研究為更進一步理解氧化鋅奈米顆粒的合成和光學特性提供了貢獻。

    In this study, zinc oxide (ZnO) nanoparticles were synthesized using a sol-gel technique with zinc acetate as the precursor and ethanol as the medium. The synthesized ZnO nanoparticles ink was characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The UV-Vis spectrum exhibited characteristic absorption peaks at wavelengths of 340-365 nm, indicating the presence of absorption bands in the ZnO nanoparticles ink. The XRD spectrum showed sharp peaks, indicating the crystalline nature of ZnO, and it also demonstrated the uniformity and size consistency of the prepared nanoparticles. The crystallite size of the ZnO nanoparticles ink was calculated using the Scherrer formula. Furthermore, the crystallinity of ZnO was enhanced by a hydrothermal synthesis method. The fluorescence performance indicated that with increasing reaction temperature, the particle crystallinity improved, and the material defects gradually decreased. The morphology and elemental analysis of the ZnO nanoparticles ink were studied using TEM and EDS techniques, and all characterization results were correlated with each other. Moreover, due to its applicability in the ultraviolet and visible regions, the excellent optoelectronic properties of ZnO were verified in photocatalytic experiments. Additionally, the prepared gas-sensitive material based on ZnO exhibited high response to 300 ppb of hydrogen sulfide gas at a working temperature of 290 degrees under a dilution ratio of 1/10000, and it demonstrated high selectivity towards hydrogen sulfide in the presence of mixed gases. In conclusion, this study provides further insights into the synthesis and optical properties of zinc oxide nanoparticles.

    中文摘要 I Abtract II 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XI 1. 研究背景介紹 1 1.1 金屬氧化物半導體 1 1.2 氧化鋅 3 1.3 氣體感測器評估指標 5 1.4 硫化氫(H2S) 7 2. 研究動機 9 3. 材料與實驗方法 10 3.1 藥品 10 3.2 儀器 12 3.3 實驗方法 13 3.3.1 PVP 墨水製備 13 3.3.2 氧化鋅奈米顆粒製備 13 3.3.3 製備不同尺寸之氧化鋅奈米顆粒 14 3.3.4 製備水熱樣品 14 3.3.5 製備鍛燒樣品 15 3.3.6 X射線繞射光譜分析 15 3.3.7 吸收光譜分析 16 3.3.8 螢光分析 16 3.3.9 細菌製備 16 3.3.10 光催化之降解孔雀石綠染劑(MG) 17 3.3.10 檢測活性氧分子(ROS) 18 3.3.11 氣體感測性能的量測 18 4. 結果與討論 19 4.1 氧化鋅奈米顆粒之反應條件 19 4.1.1 不同PVP墨水濃度調控之X射線繞射光譜 19 4.1.2 不同PVP墨水濃度調控之尺寸形貌 21 4.1.3 不同PVP墨水濃度調控之吸收光譜與能階 23 4.1.4 不同PVP墨水濃度調控之螢光光譜 25 4.1.5 反應前驅物濃度調控 26 4.1.6 反應滴定時間調控 29 4.1.7 參與反應物調控 32 4.2 氧化鋅奈米顆粒水熱反應 36 4.2.1 不同水熱反應溫度之X射線繞射光譜 36 4.2.2 不同水熱反應溫度之尺寸形貌 38 4.2.3 不同水熱反應溫度之吸收光譜與能階 39 4.2.4 不同水熱反應溫度之螢光光譜 40 4.3 光催化分析 43 4.3.1 孔雀石綠 43 4.3.2 孔雀石綠之光催化降解 43 4.4 提升光催化效果 46 4.4.1 參雜貴金屬 47 4.4.2 水熱反應 48 4.4.3 活性氧分子(ROS)檢測 50 4.4.4 光催化降解機制 52 4.5 氣體感測分析 54 4.5.1 氧化鋅奈米顆粒熱重分析 54 4.5.2 鍛燒後之X射線繞射光譜比較 56 4.5.3 鍛燒後之尺寸形貌比較 58 4.5.4 鍛燒後之吸收光譜與能階比較 59 4.5.5 鍛燒後之螢光光譜比較 60 4.5.6 鍛燒後之XPS光譜比較 61 4.5.7 氧化鋅奈米顆粒對硫化氫氣體之感測 65 4.5.8 氣體感測機制 69 5. 總結 71 Reference 72

    (1) Bugaev, A.; Zakharchenia, B.; Chudnovskii, F. The metal-semiconductor phase transition and its application. Leningrad Izdatel Nauka 1979.
    (2) Karagoz, E.; Altaf, C. T.; Yaman, E.; Yildirim, I. D.; Erdem, E.; Celebi, C.; Fidan, M.; Sankir, M.; Sankir, N. D. Flexible metal/semiconductor/metal type photodetectors based on manganese doped ZnO nanorods. Journal of Alloys and Compounds 2023, 959, 170474.
    (3) Sassi, L. M.; Iyengar, S. A.; Puthirath, A. B.; Huang, Y.; Li, X.; Terlier, T.; Mojibpour, A.; Teixeira, A. P. C.; Bharadwaj, P.; Tiwary, C. S. Bottom-up Integration of TMDCs with Pre-Patterned Device Architectures via Transfer-free Chemical Vapor Deposition. arXiv preprint arXiv:2305.14554 2023.
    (4) Berkün, Ö.; Ulusoy, M.; Altındal, Ş.; Avar, B. On frequency and voltage dependent physical characteristics and interface states characterization of the metal semiconductor (MS) structures with (Ti: DLC) interlayer. Physica B: Condensed Matter 2023, 415099.
    (5) Kong, Y.; Li, Y.; Cui, X.; Su, L.; Ma, D.; Lai, T.; Yao, L.; Xiao, X.; Wang, Y. SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flamMable gases: A review. Nano Materials Science 2021.
    (6) Guo, L.; Shen, Z.; Ma, C.; Ma, C.; Wang, J.; Yuan, T. Gas sensor based on MOFs-derived Au-loaded SnO2 nanosheets for enhanced acetone detection. Journal of Alloys and Compounds 2022, 906, 164375.
    (7) Wei, B.-Y.; Hsu, M.-C.; Su, P.-G.; Lin, H.-M.; Wu, R.-J.; Lai, H.-J. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sensors and Actuators B: Chemical 2004, 101 (1-2), 81-89.
    (8) Garzella, C.; Comini, E.; Tempesti, E.; Frigeri, C.; Sberveglieri, G. TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sensors and Actuators B: Chemical 2000, 68 (1-3), 189-196.
    (9) Luo, Y.; Ly, A.; Lahem, D.; Zhang, C.; Debliquy, M. A novel low-concentration isopropanol gas sensor based on Fe-doped ZnO nanoneedles and its gas sensing mechanism. Journal of Materials Science 2021, 56, 3230-3245.
    (10) Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical 2017, 267, 242-261.
    (11) Punginsang, M.; Zappa, D.; Comini, E.; Wisitsoraat, A.; Sberveglieri, G.; Ponzoni, A.; Liewhiran, C. Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires. Applied Surface Science 2022, 571, 151262.
    (12) Shendage, S.; Patil, V.; Vanalakar, S.; Patil, S.; Harale, N.; Bhosale, J.; Kim, J.; Patil, P. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sensors and Actuators B: Chemical 2017, 240, 426-433.
    (13) Bandgar, D.; Navale, S.; Khuspe, G.; Pawar, S.; Mulik, R.; Patil, V. Novel route for fabrication of nanostructured α-Fe2O3 gas sensor. Materials science in semiconductor processing 2014, 17, 67-73.
    (14) Samarasekara, P.; Kumara, N.; Yapa, N. Sputtered copper oxide (CuO) thin films for gas sensor devices. Journal of Physics: Condensed Matter 2006, 18 (8), 2417.
    (15) Dirksen, J. A.; Duval, K.; Ring, T. A. NiO thin-film formaldehyde gas sensor. Sensors and Actuators B: Chemical 2001, 80 (2), 106-115.
    (16) Fan, C.; Sun, F.; Wang, X.; Huang, Z.; Keshvardoostchokami, M.; Kumar, P.; Liu, B. Synthesis of ZnO hierarchical structures and their gas sensing properties. Nanomaterials 2019, 9 (9), 1277.
    (17) Abdulrahman, A. F.; Abd-Alghafour, N.; Almessiere, M. A. A high responsivity, fast response time of ZnO nanorods UV photodetector with annealing time process. Optical Materials 2023, 141, 113869.
    (18) Wang, M.; Shen, Z.; Chen, Y.; Zhang, Y.; Ji, H. Atomic structure-dominated enhancement of acetone sensing for a ZnO nanoplate with highly exposed (0001) facet. CrystEngCo mM 2017, 19 (44), 6711-6718.
    (19) Yan, P.; Hu, Q.; Chen, J.; Zhou, N.; Zhang, Q. Fabrication and optimization of ZnO NR sensors in-situ grown on ITO substrates by a solution method. Journal of Alloys and Compounds 2023, 171225.
    (20) Ahmad, I. A.; Moha mMed, Y. H. Synthesis of ZnO nanowires by thermal chemical vapor deposition technique: Role of oxygen flow rate. Micro and Nanostructures 2023, 207628.
    (21) Zi, B.; Chen, M.; Zhu, Q.; Lu, Q.; Xiao, B.; Deng, Z.; Xu, D.; Song, Z.; Zhao, J.; Zhang, Y. CuO@ In2O3/ZnO Core–Shell Nanorods for Triethylamine Detection at Room Temperature. ACS Applied Nano Materials 2023, 6 (8), 6963-6971.
    (22) Wang, S.; Jia, F.; Wang, X.; Hu, L.; Sun, Y.; Yin, G.; Zhou, T.; Feng, Z.; Kumar, P.; Liu, B. Fabrication of ZnO nanoparticles modified by uniformly dispersed Ag nanoparticles: enhancement of gas sensing performance. ACS omega 2020, 5 (10), 5209-5218.
    (23) Singh, A.; Nenavathu, B. P.; Irfan; Mohsin, M. Facile synthesis of Te-doped ZnO nanoparticles and their morphology-dependent antibacterial studies. Chemical Papers 2021, 75 (8), 4317-4326.
    (24) Ha, N. H.; Thinh, D. D.; Huong, N. T.; Phuong, N. H.; Thach, P. D.; Hong, H. S. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Applied Surface Science 2018, 434, 1048-1054.
    (25) Hjiri, M.; Bahanan, F.; Aida, M.; El Mir, L.; Neri, G. High performance CO gas sensor based on ZnO nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials 2020, 30, 4063-4071.
    (26) Xian, J.; Li, J.; Wang, W.; Zhu, J.; Li, P.; Leung, C. M.; Zeng, M.; Lu, X.; Gao, X.; Liu, J.-M. Enhanced specific surface area of ZIF-8 derived ZnO induced by sulfuric acid modification for high-performance acetone gas sensor. Applied Surface Science 2023, 614, 156175.
    (27) Shi, T.; Hou, H.; Hussain, S.; Ge, C.; Alsaiari, M. A.; Alkorbi, A. S.; Liu, G.; Alsaiari, R.; Qiao, G. Efficient detection of hazardous H2S gas using multifaceted Co3O4/ZnO hollow nanostructures. Chemosphere 2022, 287, 132178.
    (28) Xuan, J.; Wang, L.; Zou, Y.; Li, Y.; Zhang, H.; Lu, Q.; Sun, M.; Yin, G.; Zhou, A. Room-temperature gas sensor based on in situ grown, etched and W-doped ZnO nanotubes functionalized with Pt nanoparticles for the detection of low-concentration H2S. Journal of Alloys and Compounds 2022, 922, 166158.
    (29) Shewale, P. S.; Yun, K.-S. Synthesis and characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H2S gas sensor. Journal of Alloys and Compounds 2020, 837, 155527.
    (30) Nakate, U. T.; Yu, Y.-T.; Park, S. Hydrothermal synthesis of ZnO nanoflakes composed of fine nanoparticles for H2S gas sensing application. Ceramics International 2022, 48 (19), 28822-28829.
    (31) Hsieh, S.-H.; Ting, J.-M. Characterization and photocatalytic performance of ternary Cu-doped ZnO/Graphene materials. Applied Surface Science 2018, 427, 465-475.
    (32) Yousefi, R.; Beheshtian, J.; Seyed‐Talebi, S. M.; Azimi, H.; Jamali‐Sheini, F. Experimental and theoretical study of enhanced photocatalytic activity of Mg‐doped ZnO NPs and ZnO/rGO nanocomposites. Chemistry–An Asian Journal 2018, 13 (2), 194-203.
    (33) Lin, G.-R.; Lin, C.-J. Improved blue-green electroluminescence of metal-oxide-semiconductor diode fabricated on multirecipe Si-implanted and annealed SiO 2/Si substrate. Journal of applied physics 2004, 95 (12), 8484-8486.
    (34) Omran, A. M. Characterization of green route synthesized zinc oxide nanoparticles using Cyperus rotundus rhizome extract: Antioxidant, antibacterial, anticancer and photocatalytic potential. Journal of Drug Delivery Science and Technology 2023, 79, 104000.
    (35) Flora, R. M. N.; Palani, S.; Kowsalya, P.; Chamundeeswari, M. Sunlight‐driven antibacterial activity of a novel zinc oxide quantum dot and its optimization using Box–Behnken design—A medicament for co mMunicable disease protective wearables. Biotechnology and Applied Biochemistry 2023, 70 (1), 221-237.
    (36) Pei, X.; Jiang, H.; Li, C.; Li, D.; Tang, S. Oxidative stress-related canonical pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide nanoparticles. Journal of Hazardous Materials 2023, 442, 130039.
    (37) Kumar, S.; Lawaniya, S. D.; Agarwal, S.; Yu, Y.-T.; Nelamarri, S. R.; Kumar, M.; Mishra, Y. K.; Awasthi, K. Optimization of Pt nanoparticles loading in ZnO for highly selective and stable hydrogen gas sensor at reduced working temperature. Sensors and Actuators B: Chemical 2023, 375, 132943.
    (38) Maebana, L. M.; Tshabalala, Z. P.; Swart, H. C.; Leshabane, N.; Erasmus, L. J.; Motaung, D. E. Comparison study on ZnO and CuO gas sensing characteristics: Temperature modulated-dual selectivity towards benzene and xylene vapours. Materials Chemistry and Physics 2023, 297, 127352.
    (39) Jain, N.; Puri, N. K. Zinc oxide incorporated molybdenum diselenide nanosheets for chemiresistive detection of ethanol gas. Journal of Alloys and Compounds 2023, 955, 170178.
    (40) Patil, S. C.; Dhavale, R. P.; Patil, V. L.; Nimbalkar, M. S.; Sonawane, K. D.; Patil, P. S.; Karanjkar, M. M.; Pawar, K. D. Calcination temperatures influence the chemo-resistive gas sensing properties of biogenic zinc oxide nanoparticles with antibacterial activity. Inorganic Chemistry Co mMunications 2023, 153, 110847.
    (41) Jiang, B.; Lu, J.; Han, W.; Sun, Y.; Wang, Y.; Cheng, P.; Zhang, H.; Wang, C.; Lu, G. Hierarchical mesoporous zinc oxide microspheres for ethanol gas sensor. Sensors and Actuators B: Chemical 2022, 357, 131333.
    (42) kumar Anbalagan, A.; Gupta, S.; Kumar, R. R.; Tripathy, A. R.; Chaudhary, M.; Haw, S.-C.; Murugesan, T.; Lin, H.-N.; Chueh, Y.-L.; Tai, N.-H. Ga mMa-ray engineered surface defects on zinc oxide nanorods towards enhanced NO2 gas sensing performance at room temperature. Sensors and Actuators B: Chemical 2022, 369, 132255.
    (43) Ali, A.; Alzamly, A.; Greish, Y. E.; Alzard, R. H.; El-Maghraby, H. F.; Qamhieh, N.; Mahmoud, S. T. Enhancing Hydrogen Sulfide Detection at Room Temperature Using ZIF-67-Chitosan Membrane. Membranes 2023, 13 (3), 333.
    (44) Mao, Z.; Li, H.; Zhao, X.-L.; Zeng, X.-H. Hydrogen sulfide protects Sertoli cells against toxicant Acrolein-induced cell injury. Food and Chemical Toxicology 2023, 176, 113784.
    (45) Vuong, D. D.; Sakai, G.; Shimanoe, K.; Yamazoe, N. Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size. Sensors and Actuators B: Chemical 2005, 105 (2), 437-442.
    (46) Huang, Y.; Chen, W.; Zhang, S.; Kuang, Z.; Ao, D.; Alkurd, N. R.; Zhou, W.; Liu, W.; Shen, W.; Li, Z. A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature. Applied Surface Science 2015, 351, 1025-1033.
    (47) Usha, S. P.; Mishra, S. K.; Gupta, B. D. Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance. Sensors and Actuators B: Chemical 2015, 218, 196-204.
    (48) Jha, R. K.; D’Costa, J. V.; Sakhuja, N.; Bhat, N. MoSe2 nanoflakes based chemiresistive sensors for ppb-level hydrogen sulfide gas detection. Sensors and Actuators B: Chemical 2019, 297, 126687.
    (49) Debanath, M.; Karmakar, S. Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Materials Letters 2013, 111, 116-119.
    (50) Abou Ha mMad, A. B.; Mansour, A.; Elhelali, T. M.; El Nahrawy, A. M. Sol-Gel/Gel Casting Nanoarchitectonics of Hybrid Fe2O3–ZnO/PS-PEG Nanocomposites and Their Optomagnetic Properties. Journal of Inorganic and Organometallic Polymers and Materials 2023, 33 (2), 544-554.
    (51) Zhang, J.; Liu, H.; Wang, Z.; Ming, N. Low-temperature growth of ZnO with controllable shapes and band gaps. Journal of Crystal Growth 2008, 310 (11), 2848-2853.
    (52) Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S.-J.; Oruganti, S. K. influence of processing parameters to control morphology and optical properties of Sol-Gel synthesized ZnO nanoparticles. ECS Journal of Solid State Science and Technology 2021, 10 (2), 023002.
    (53) Yu, J.; Shan, C.-X.; Qiao, Q.; Xie, X.-H.; Wang, S.-P.; Zhang, Z.-Z.; Shen, D.-Z. Enhanced responsivity of photodetectors realized via impact ionization. Sensors 2012, 12 (2), 1280-1287.
    (54) Coulter, J. B.; Birnie, D. P. Assessing Tauc Plot Slope Quantification: ZnO Thin Films as a Model System. physica status solidi (b) 2018, 255 (3).
    (55) Kamari, H. M.; Al-Hada, N. M.; Saion, E.; Shaari, A. H.; Talib, Z. A.; Flaifel, M. H.; Ahmed, A. A. A. Calcined solution-based PVP influence on ZnO semiconductor nanoparticle properties. Crystals 2017, 7 (2), 2.
    (56) Chand, P.; Gaur, A.; Kumar, A. Structural, optical and ferroelectric behavior of hydrothermally grown ZnO nanostructures. Superlattices and Microstructures 2013, 64, 331-342.
    (57) Li, W.; Wang, G.; Chen, C.; Liao, J.; Li, Z. Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials 2017, 7 (1), 20.
    (58) Zhou, J.; Zhao, F.; Wang, Y.; Zhang, Y.; Yang, L. Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties. Journal of luminescence 2007, 122, 195-197.
    (59) Dzhagan, V.; Isaieva, O.; Selyshchev, O.; Toma, M.; Belyaev, A.; Yukhymchuk, V.; Valakh, M.; Zahn, D. R. T. Influence of different polymers on photoluminescence of colloidal ZnO nanocrystals. Journal of Nanoparticle Research 2022, 24 (12), 269. DOI: 10.1007/s11051-022-05650-w.
    (60) Farhat, O. F.; Husham, M.; ALDelfi, H. H.; Bououdina, M. Tuning the diameter and optical properties of ZnO nanorods grown onto flexible substrates at different temperatures. Journal of Crystal Growth 2023, 607, 127115.
    (61) Wang, J.; Yu, S.; Zhang, H. Effect of surfactants on photoluminescence properties of ZnO synthesized by hydrothermal method. Optik 2019, 180, 20-26.
    (62) Kurudirek, S. V.; Pradel, K. C.; Su mMers, C. J. Low-temperature hydrothermally grown 100 μm vertically well-aligned ultralong and ultradense ZnO nanorod arrays with improved PL property. Journal of alloys and compounds 2017, 702, 700-709.
    (63) Norberg, N. S.; Gamelin, D. R. Influence of surface modification on the luminescence of colloidal ZnO nanocrystals. The Journal of Physical Chemistry B 2005, 109 (44), 20810-20816.
    (64) Liu, D.; Barbar, A.; Najam, T.; Javed, M. S.; Shen, J.; Tsiakaras, P.; Cai, X. Single noble metal atoms doped 2D materials for catalysis. Applied Catalysis B: Environmental 2021, 297, 120389.
    (65) Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds 2017, 727, 792-820.
    (66) Zada, A.; Muha mMad, P.; Ahmad, W.; Hussain, Z.; Ali, S.; Khan, M.; Khan, Q.; Maqbool, M. Surface plasmonic‐assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Advanced Functional Materials 2020, 30 (7), 1906744.
    (67) Ishchenko, O.; Rogé, V.; Lamblin, G.; Lenoble, D.; Fechete, I. TiO2, ZnO, and SnO2-based metal oxides for photocatalytic applications: principles and development. Comptes Rendus. Chimie 2021, 24 (1), 103-124.
    (68) Charanpahari, A.; Ghugal, S. G.; Umare, S. S.; Sasikala, R. Mineralization of malachite green dye over visible light responsive bismuth doped TiO 2–ZrO 2 ferromagnetic nanocomposites. New Journal of Chemistry 2015, 39 (5), 3629-3638.
    (69) Singh, P.; Raizada, P.; Kumari, S.; Kumar, A.; Pathania, D.; Thakur, P. Solar-Fenton removal of malachite green with novel Fe0-activated carbon nanocomposite. Applied Catalysis A: General 2014, 476, 9-18.
    (70) Uribe-López, M.; Hidalgo-López, M.; López-González, R.; Frías-Márquez, D.; Núñez-Nogueira, G.; Hernández-Castillo, D.; Alvarez-Lemus, M. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. Journal of Photochemistry and Photobiology A: Chemistry 2021, 404, 112866.
    (71) Xiao, Y.; Zhou, W.; Mo, L.; Chen, J.; Li, M.; Liu, S. Microstructure, mineralogical characterization and the metallurgical process reconstruction of the zinc calcine relics from the zinc smelting site (Qing Dynasty). Materials 2021, 14 (8), 2087.
    (72) Mokhtar, M.; Panja, S.; Alshehri, A.; Halawani, W.; Maiti, D. Benzylic Alcohol Oxidation using Copper Oxide/ZincOxide/Zirconia Nanocomposite Catalysts. Chemistry–An Asian Journal 2023, 18 (7), e202201294.
    (73) Cao, X. T.; Showkat, A. M.; Bach, L. G.; Lee, W.-K.; Lim, K. T. Preparation and characterization of Poly (4-vinylpyridine) encapsulated zinc oxide by surface-initiated RAFT polymerization. Molecular Crystals and Liquid Crystals 2014, 599 (1), 55-62.
    (74) Kayani, Z. N.; Saleemi, F.; Batool, I. Effect of calcination temperature on the properties of ZnO nanoparticles. Applied Physics A 2015, 119, 713-720.
    (75) Rambabu, K.; Bharath, G.; Banat, F.; Show, P. L. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. Journal of hazardous materials 2021, 402, 123560.
    (76) Al-Gaashani, R.; Radiman, S.; Daud, A.; Tabet, N.; Al-Douri, Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceramics International 2013, 39 (3), 2283-2292.
    (77) Das, J.; Pradhan, S.; Sahu, D.; Mishra, D.; Sarangi, S.; Nayak, B.; Verma, S.; Roul, B. Micro-Raman and XPS studies of pure ZnO ceramics. Physica B: Condensed Matter 2010, 405 (10), 2492-2497.
    (78) Kim, Y.-S.; Tai, W.-P.; Shu, S.-J. Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process. Thin solid films 2005, 491 (1-2), 153-160.
    (79) Li, D.; Hu, J.; Fan, F.; Bai, S.; Luo, R.; Chen, A.; Liu, C. C. Quantum-sized ZnO nanoparticles synthesized in aqueous medium for toxic gases detection. Journal of alloys and compounds 2012, 539, 205-209.
    (80) Silverstein, R. M.; Bassler, G. C. Spectrometric identification of organic compounds. Journal of Chemical Education 1962, 39 (11), 546.
    (81) Gao, R.; Gao, S.; Wang, P.; Xu, Y.; Zhang, X.; Cheng, X.; Zhou, X.; Major, Z.; Zhu, H.; Huo, L. Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism. Sensors and Actuators B: Chemical 2020, 303, 127085.
    (82) Wang, C.; Cui, X.; Liu, J.; Zhou, X.; Cheng, X.; Sun, P.; Hu, X.; Li, X.; Zheng, J.; Lu, G. Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers. Acs Sensors 2016, 1 (2), 131-136.
    (83) Tian, X.; Yao, L.; Cui, X.; Zhao, R.; Xiao, X.; Wang, Y. Novel Al-doped CdIn2O4 nanofibers based gas sensor for enhanced low-concentration n-butanol sensing. Sensors and Actuators B: Chemical 2022, 351, 130946.
    (84) Wagh, M.; Patil, L.; Seth, T.; Amalnerkar, D. Surface cupricated SnO2–ZnO thick films as a H2S gas sensor. Materials Chemistry and Physics 2004, 84 (2-3), 228-233.
    (85) Shinde, S.; Patil, G.; Kajale, D.; Gaikwad, V.; Jain, G. Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor. Journal of Alloys and Compounds 2012, 528, 109-114.
    (86) Yu, Z.; Gao, J.; Xu, L.; Liu, T.; Liu, Y.; Wang, X.; Suo, H.; Zhao, C. Fabrication of lettuce-like ZnO gas sensor with enhanced H2S gas sensitivity. Crystals 2020, 10 (3), 145.
    (87) Mortezaali, A.; Moradi, R. The correlation between the substrate temperature and morphological ZnO nanostructures for H2S gas sensors. Sensors and Actuators A: Physical 2014, 206, 30-34.
    (88) Wang, X.; Li, S.; Xie, L.; Li, X.; Lin, D.; Zhu, Z. Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceramics International 2020, 46 (10), 15858-15866.
    (89) Badadhe, S. S.; Mulla, I. H2S gas sensitive indium-doped ZnO thin films: Preparation and characterization. Sensors and Actuators B: Chemical 2009, 143 (1), 164-170.
    (90) Bodade, A.; Bende, A.; Chaudhari, G. Synthesis and characterization of CdO-doped nanocrystalline ZnO: TiO2-based H2S gas sensor. Vacuum 2008, 82 (6), 588-593.
    (91) Zhao, M.; Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Electrospun Cu-doped ZnO nanofibers for H2S sensing. Sensors and Actuators B: Chemical 2011, 156 (2), 588-592.
    (92) Hosseini, Z.; Mortezaali, A. Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sensors and Actuators B: Chemical 2015, 207, 865-871.
    (93) Shewale, P.; Patil, V.; Shin, S.; Kim, J.; Uplane, M. H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis. Sensors and Actuators B: Chemical 2013, 186, 226-234.
    (94) Liu, S.; Yang, W.; Liu, L.; Chen, H.; Liu, Y. Enhanced H2S Gas-Sensing Performance of Ni-Doped ZnO Nanowire Arrays. ACS omega 2023, 8 (8), 7595-7601.
    (95) Kim, J.; Yong, K. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. The Journal of Physical Chemistry C 2011, 115 (15), 7218-7224.
    (96) Zhang, W.; Song, L.; Zhao, D.; Liu, T.; Jiang, H.; Yang, W.; Zhao, B.; Huang, W.; Wang, P.; Sui, L. Construction of hierarchical ZnO flower-like structure for boost H2S detection at low temperature. Sensors and Actuators B: Chemical 2023, 385, 133728.
    (97) Li, Z.; Lai, Z.; Zhao, Z.; Zhang, L.; Jiao, W. A high-performance gas sensor for the detection of H2S based on Nd2O3-doped ZnO nanoparticles. Sensors and Actuators A: Physical 2023, 350, 114119.
    (98) Amu-Darko, J. N. O.; Hussain, S.; Zhang, X.; Alothman, A. A.; Ouladsmane, M.; Nazir, M. T.; Qiao, G.; Liu, G. Metal-organic frameworks-derived In2O3/ZnO porous hollow nanocages for highly sensitive H2S gas sensor. Chemosphere 2023, 314, 137670.
    (99) Lal, M.; Sharma, P.; Singh, L.; Ram, C. Photocatalytic degradation of hazardous Rhodamine B dye using sol-gel mediated ultrasonic hydrothermal synthesized of ZnO nanoparticles. Results in Engineering 2023, 17, 100890.
    (100) Cao, Y.-Q.; Qian, X.; Zhang, W.; Wang, S.-S.; Li, M.; Wu, D.; Li, A.-D. ZnO/ZnS core-shell nanowires arrays on Ni foam prepared by atomic layer deposition for high performance supercapacitors. Journal of The Electrochemical Society 2017, 164 (14), A3493.
    (101) Al-Nassar, S. I.; Hussein, F. I. The effect of laser pulse energy on ZnO nanoparticles formation by liquid phase pulsed laser ablation. Journal of materials research and technology 2019, 8 (5), 4026-4031.
    (102) Xu, J.; Pan, Q.; Tian, Z. Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical 2000, 66 (1-3), 277-279.

    無法下載圖示 校內:2028-08-21公開
    校外:2028-08-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE