簡易檢索 / 詳目顯示

研究生: 辛哈努
Singhanu, Nidarut
論文名稱: 利用氧化鋁層提高染料敏化太陽能電池的效率
Efficiency Enhancement in Dye-Sensitized Solar Cells by Utilization of Al2O3 Layers
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 120
外文關鍵詞: Dye-sensitized solar cell, Alternating assembly structure, Organic dye, Dye cocktails, Alumina interlayer, Alumina outer layer
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this work, an alternating assembly structure of organic dye and metal oxide layer in multi-layer dye-sensitized solar cell was proposed as a strategy to hopefully enhance the overall photon-electron conversion efficiency of the as-fabricated solar cells. Both single dye (D149) and dye cocktails (D149/Mercurochrome = 60:1) sensitizers were examined while Al2O3 was utilized as the modification material. The modification and sensitization process were repeated several times in the alternating assembly. The experimental results revealed that the cells with two cycles alternating assembly structure of dye/Al2O3 exhibited the best performance and raised the conversion efficiency from 4.74% to 5.68% by 20% for single dye and from 4.74% to 5.81% by 23% for dye cocktails, respectively. These results suggested that Al2O3 interlayer can increase the amount of dye adsorption and prohibit the dye aggregation, while the alumina outer layer plays a role in retarding the recombination reaction. These effects were investigated by current density-voltage characteristics, ultraviolet-visible spectrum, dark current measurements, and electrochemical impedance spectroscopy.

    ABSTRACT I ACKNOWLEDGEMENT II TABLE OF CONTENTS III LIST OF TABLES VII LIST OF FIGURES IX CHAPTER ONE INTRODUCTION 1 1.1 Background and Motivation of the study 1 1.2 Objective of the study 2 1.3 Outline of the thesis 3 CHAPTER TWO THEORETICAL 5 2.1 Dye-sensitized nanostructured solar cells 5 2.1.1 Operating principle of the dye-sensitized solar cell 5 2.1.2 The evolution of dye-sensitized solar cells 9 2.2 Basics of photovoltaic energy conversion 16 2.2.1 Solar irradiation and availability of salar electricity 16 2.2.2 Photovoltaic cell performance 17 2.3 Incident photo to current conversion efficiency 19 2.4 Electrochemical impedance spectroscopy 20 2.4.1 The theory in AC impedance 20 2.4.2 Dye-sensitized solar cell using elctrochemical impedance spctroscopy 23 2.5 Dye sensitizer 25 2.5.1 Individual dye sensitization 25 2.5.2 Co-sensitization 28 2.5.2.1 Dye cocktails approach 30 2.6 Dye multilayer 35 CHAPTER THREE EXPERIMENTAL 40 3.1 Chemical and materials 40 3.1.1 Chemicals 40 3.1.2 Materials 42 3.2 Apparatus and analyses 43 3.2.1 Instruments 43 3.2.2 Analyses 44 3.3 Preparation of the dye-sensitized solar cells 50 3.3.1 Substrates 50 3.3.1.1 Pretreatment of ITO substrate 50 3.3.2 Nanoparticle electrodes 51 3.3.2.1 Preparation nanostructured TiO2 electrodes 51 3.3.2.2 Deposing the TiO2 layer on the glass plate 53 3.3.3 Dye sensitizer 54 3.3.4 Prepation of Al2O3 layers 57 3.3.5 Cell configurations 57 3.3.5.1 The alternating assembly structure in single dye approach 58 3.3.5.2 The alternating assembly structure in dye cocktails approach 59 3.3.6 Counter-electrode 60 3.3.7 Electrolyte 61 3.3.8 Assembling the cell 61 3.3.9 Testing the dye solar cells 62 CHAPTER FOUR RESULTS AND DISCUSSIONS 63 4.1 Characterization of the nanocrystalline TiO2 thin film 63 4.1.1 SEM analysis 63 4.1.1.1 TiO2 layer thickness 63 4.1.1.2 The TiO2 surface morphology 66 4.1.2 XRD analysis 66 4.2 The absorption spectra characteristic of organic dye 68 4.2.1 Mercurochrome 68 4.2.2 D149 71 4.2.3 Co-sensitization of organic dyes 72 4.3 The single dye approach by utilization of Al2O3 layers 73 4.3.1 D149 dye adsorbed on TiO2 film 74 4.3.1.1 Photovoltaic performance of the DSSCs 74 4.3.1.2 The absorption spectra characteristic of D149 dye 75 4.3.2 D149 dye adsorbed on TiO2 film utilizing Al2O3 as the outer layer 76 4.3.2.1 Photovoltaic performance of the DSSCs 76 4.3.3 D149 dye adsorbed on TiO2 film by utilization of Al2O3 layers 77 4.3.3.1 Photovoltaic performance of the DSSCs 78 4.3.3.2 The absorption spectra characteristic of D149 dye by utilization of Al2O3 layers 81 4.3.3.3 Dark current 82 4.3.4 The DSSCs fabricated at 2 cycles of Al2O3 with various immersion times of D149 dye sensitizer 84 4.3.4.1 Photovoltaic performance of the DSSCs 84 4.4 The dye cocktails approach by utilization of Al2O3 layers 85 4.4.1 Dye cocktails adsorbed on TiO2 film 86 4.4.1.1 The absorption spectra characteristic of D149 and Mercurochrome dye sensitizer 86 4.4.1.2 Performance of the DSSCs with dye cocktails 87 4.4.1.3 Dark current 91 4.4.2 Dye cocktails adsorbed on TiO2 film by utilization of Al2O3 layers 92 4.4.2.1 Photovoltaic performance of the DSSCs 93 4.4.2.2 The absorption spectra characteristic 95 4.4.2.3 Dark current 96 4.5 Electrochemical impedance spectroscopy analysis 98 CHAPTER FIVE CONCLUSIONS AND SUGGESSIONS 105 5.1 Conclusions 105 5.2 Suggestions 107 REFERENCES 109

    Adachi, M., Sakamoto, M., Jiu, J.T., Ogata, Y., & Isoda, S. (2006). Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B, 110, 13872-13880.
    Bandara, J., & Weerasinghe, H. (2006). Design of high-efficiency solid-state dyesensitized solar cells using coupled dye mixtures. Solar Energy Materials & Solar Cells, 90, 864–871.
    Cao, F., Oskam, G., & Searson, P. C. (1995). A solid state, dye sensitized photoelectrochemical cell. J. Physical Chemistry, 99, 17071.
    Chen, Y.S., Zeng Z.H., Li, C., Wang, W.B., Wang, X.S., & Zhang B.W. (2005). Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New Journal of Chemistry, 29, 773-776.
    Chen, S.G., Chappel, S., Dlamant, Y., & Zaban, A. (2001). Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells. Chem. Mater, 13, 4629-4634.
    Choi, H., Lee, J.K., Song, K., Kang, S.O., & Ko, J. (2007). Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell. Tetrahedron, 63, 3115-3121.
    Cid, J.J., Yum, J.H., Jang, S.R., Nazeeruddin, M.K., Eugenia M.F., Palomares, E., Ko, J., Grätzel, M., & Torres, T. (2007). Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. Angewandte Chemie International Edition, 46, 8358–8362.
    Clifford, John N., Palomares, E., Nazeeruddin, Md. K., Thampi, R., Grätzel, M., & Durrant. (2004). Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 Films. J. Am. Chem. Soc., 126, 5670-5671.
    Ehret, A., Stuhl, L., Spitler, & M. T. (2001). Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes. J. Phys. Chem. B, 105, 9960-9965.
    Fang, J., Su, L., Wu, J., Shen, Y., & Lu, Z. (1997). Fabrication, characterization, and photovoltaic study of dye-co-modified TiO2 electrodes. New Journal of Chemistry, 21, 1303-1307.
    Fillinger, A., Soltz, D., & Parkinson, B.A. (2002). Dye sensitization of natural anatase crystals with a ruthenium-based dye. J. Electronchem. Soc., 149, A1146-A1156.
    Grätzel, M., & Kay, A. (2002). Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mater, 14, 2930-2935.
    Grätzel, M. (2001). Photoelectrochemical cells,” Nature, 414, 338-344.
    Grätzel, M. (2000). Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics: Research & Applications, 8, 171-185.
    Guo, M., Diaoc, P., Rena, Y.J., Mengd, F., Tiand, H., Cai, & S.M. (2005). Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes. Solar Energy Materials & Solar Cells, 88, 23-35.
    Han, H.W., Liu, W., Zhang, J., & Zhao, X.Z. (2005). A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solide-state redox electrolyte for dye-sensitized nanocrystalline solar cells. Advanced Functional Materials, 15, 12, 1940-1944.
    Hara, K., Horiguchi, T., Kinoshita, T., Sayama, K., Sugihara, H., & Arakawa, H. (2000). Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar Energr Materials & Solar Cells, 64, 115-134.
    Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K., & Arakawa, H. (2003). Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New Journal of Chemistry, 27, 783-785.
    Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., & Arakawa, H. (2003). Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B, 107, 597-606.
    Horiuchi, T., Miura, H, Sumioka, K., & Uchida, S. (2004). High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc., 126, 12218-12219.
    Horiuchi, T., Miura, H, Sumioka, K., & Uchida, S. (2003). Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem. Commun., 3036-3037.
    Ito, S., Miura, H., Uchida, S., Takata, M., Sumioka, K., Liska, P., Comte, P., Pechy, P., & Grätzel, M. (2008). High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun., 41, 5194-5196.
    Ito, S., Zakeeruddin, M., Humphry-Baker, R., Liska, P., Charvet, R., Comte, P., Nazeeruddin, M.K., Pechy, P., Takata, M., Miura, H., Uchida, S., & Grätzel, M. (2006). High-efficiency organic dye seneitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Advanced Materials, 18, 1202-1205.
    Jana, A.K., & Bhowmik, B.B. (1999). Enhancement in power output of solar cells consisting of mixed dyes. J. Photochemistry and Photobiology A: Chemistry, 122, 53-56.
    Jung, H.S., Lee, J.K., Nastasi, M., Lee, S.W., Kim, J.Y., Park, J.S., & Hong, K.S. (2005). Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir, 21, 10332-10335.
    Koo, H.J., Kim, K.K., Park, N.G., Hwang, S.U., Park, C.M., & Kim, C.H. (2007). Fabrication of heterosensitizer-junction dye-sensitized solar cells. Applied Physics Letters, 92, 142103.
    Kim, J.Y., Lee, S., Noh, J.H., Jung, H.S., & Hong, K.S. (2009). Enhanced photovoltaic properties of overlayer-coated nanocrystalline TiO2 dye-sensitized solar cells (DSSCs). J. Electroceram, 23, 422-425.
    Kim, K.M., Park, N.G., Kang, M.G., Ryu, K.S., & Chang, S.H. (2006). Effect of TiO2 inclusion in the poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolyte of dye-sensitized solar cell. Bulletin of the Korean Chemical Society, 27, 2, 322-324.
    Koehorst, R.B. M., Boschloo, G.K., Savenije, T.J.,_Goossens, A., & Schaafsma, T.J. (2000). Spectral sensitization of TiO2 substrates by monolayers of porphyrin heterodimers. J. Phys. Chem. B, 104, 2371-2377.
    Krűger, J., Plass, R., Cevey, L., Piccirelli, M., Grätzel, M., & Bach, U. (2001). High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letter, 79, 2085-2087.
    Kuang, D., Walter, P., Nűesch, F., Kim, S., Ko, J., Comte, P., Zakeeruddin, S.M., Nazeeruddin, M.K., & Grätzel, M. (2007). Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir, 23, 10906-10909.
    Kuang, D., Uchida, S., Humphry-Baker, R., Zakeeruddin, S.M., & Grätzel, M. (2008). Organic dye-sensitized ionic liquid based solar cells: remarkable enhancement in performance through molecular design of indoline sensitizers. Angew. Chem. Int. Ed., 47, 1923-1927.
    Kumara, G.R.A., Kaneko S., Okuya, M., Onwona-Agyeman, B., Konno, A. & Tennakone, K. (2006). Shiso leaf pigments for dye-sensitized solid-state solar cell. Solar Energy Materials & Solar Cells, 90, 1220-1226.
    Lee, Y.L., & Lo, Y.S. (2009). Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Advanced Functional Materials, 19, 604-609.
    Lee, Y.L., Shen, Y.J., & Yang, Y.M. (2008). A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications. Nanotechnology, 19, 455201.
    Lee, S., Kim, J.Y., Hong, K.S., Jung, H.S., Lee, J.K., & Shin, H. (2006). Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Solar Energy Materials & Solar Cells, 90, 2405-2412.
    Luo, F., Wang, L., Ma, B., & Qiu, Y. (2008). Post-modification using aluminum isopropoxide after dye-sensitization for improved performance and stability of quasi-solid-state solar cells. J. Photochemistry and Photobiology A: Chemistry, 197, 375-381.
    Ma, B.B., Gao, R., Wang, L.D., Luo, F., Zhan, C., Li, J.L., & Qiu, Y. (2009). Alternating assembly structure of the same dye and modification material in quasi-solid state dye-sensitized solar cell. J. Photochemistry and Photobiology A: Chemistry, 202, 33-38.
    Mikoshiba, S. (2000). 16th European Photovoltaic Solar Energy Conference, 1-5 May Clasgow UK.
    Nazeeruddin, M.K., Angelis, F.D., Fantacci, S., Sellon, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., & Grätzel, M. (2005). Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc., 127, 16835-16847.
    Nazeeruddin, M.K., Splivallo, R., Liska, P., Comte, P., & Grätzel, M. (2003). A swift dye uptake produre for dye sensitized solar cell. Chem. Commun., 9, 1456-1457.
    Nazeeruddin, M.K., Humpbry-Baker, R., Liska, P., & Grätzel, M. (2003). Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys. Chem. B, 107, 8981-8987.
    Nazeeruddin, M.K., Pechy, P., Renouard, T., Zakeeruddin, S.M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G., Bignozzi, C.A., & Grätzel, M. (2001). Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-Based solar cells. J. Am. Chem. Soc., 123, 1613-1624.
    Nazeeruddin, M.K., Zakeeruddin, S.M., Humphry-Baker, R., Jirousek, M., Liska, P., Vlachopoulos, N., Shklover, V., Fischer, C.H., & Grätzel, M. (1999). Acid-Base equilibria of (2,2’-bipyridy-4,4’-dicarboxylic acid) ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry, 38, 6298-6305.
    Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Vlachopoulos, N., & Grätzel, M. (1993). Conversion of light to electricity by cis-X2Bis(2.2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc., 115, 6382-6390.
    Ogomi, Y., Kashiwa, Y., Noma, Y., Fujita, Y., Kojima, S., Kono, M., Yamaguchi, Y., & Hayase, S. (2009). Photovoltaic performance of dye-sensitized solar cells stained with black dye under pressurized condition and mechanism for high efficiency. Solar Energy Materials & Solar Cells, 93, 1009-1012.
    Ogomi, Y., Sakaguchi, S., Kado, T., Kono, M., Yamaguchi, Y., & Hayase, S. (2006). Ru dye uptake under pressurized CO2 improvement of photovoltaic performances for dye-sensitized solar cells. J. Electrochemical Society, 153, A2294-A2297.
    O’Regan, B., & Schwartz, D.T. (1998). Large enhancement in Photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL¢NCS/CuSCN: initiation and potential mechanisms. Chem. Mater, 101, 1501-1509.
    O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737-740.
    Palomers, E., Clifford, N., Haque, S.A., Lutz, T., & Durrant, J.R. (2002). Control of charge recombination dynamics in dye sensitized solar cells by the use of confoemally deposited metal oxide blocking layers. J. Am. Chem. Soc., 125, 475-482.
    Perera, V.P.S., Pitigala, P.K.D.D.P., Senevirathne, M.K.I., & Tennakone, K. (2005). A solar cell sensitized with three different dyes. Solar Energy Materials & Solar Cells, 85, 91-98.
    Perera, V.P.S., Pitigala, P.K.D.D.P., Jayaweera, P.V.V., Bandaranayake, K.M.P., & Tennakone, K. (2003). Dye-sensitized solid-state photovoltaic cells based on dye multilayer-semiconductor nanostructures. J. Phys. Chem. B, 107, 13758-13761.
    Pitigala, P.K.D.D.P., Senevirathne, M.K.I., Perera V.P.S. & Tennakone, K. (2006). Dye-multilayer semiconductor nanostructures. Comptes Rendus Chimie, 9, 605-610.
    Roy, M.S., Balraju, P., Kumar, M., & Sharma, G.D. (2008). Dye-sensitized solar cell based on rose bengal dye and nanocrystalline TiO2. Solar Energy Materials & Solar Cells, 92, 909-913.
    Sayama, K., Tsukagoshi, S., Mori, T., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., & Arakawa, H. (2003). Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Solar Energy Materials & Solar Cells, 80, 47-71.
    Schmidt-Mende, L., Bach, U., Humphry-Baker R., Horiuchi, T., Miura, H., Ito, S., Uchida, S., & Grätzel, M. (2005). Organic dye for highly efficiency solid-state dye-sensitized solar cells. Advanced Materials, 17, 7, 813-815.
    Sisimanne, P.M., & Perera, V.P.S. (2008). Progress in dye-sensitized solid state solar cells. Phys. Stat. Sol., 9, 1828-1833.
    Stergiopoulos, S., Arabatzis, I.M., Katsaros, G., & Falaras, P. (2002). Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficiency nanocrystalline TiO2 photoelectrochemical cells. Nano Letters, 2, 11, 1259-1261.
    Suri, P., & Mehra, R.M. (2007). Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell. Solar Energy Materials & Solar Cells, 91, 518-524.
    Tennakone, K., Kumara, G.R.R.A., Kottegoda, I.R.M., Wijayantha, K.G.U., & Perera, V.P.S. (1998). A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex. J. Physics D: Applied Physics, 31, 1492-1496.
    Tennakone, K., Kumara, G.R.R.A., Kottegoda, I.R.M., Perera, V.P.S., & Weerasundara, P.S.R.S. (1998). Sensitization of nano-porous films of TiO2 with santalin (red sandalwood pigment) and construction of dye-sensitized solid-state photovoltalic cells. J. Photochemistry and Photobiology A:Chemistry, 117, 137-142.
    Tsubomura, H., Matsumura, M., Nomura, Y., & Amamiya, T. (1976). Dye sensitized zinc oxide aqueous electrolyte: platinum photocell. Nature, 261, 402-403.
    Ushiroda, S., Ruzycki, N., Spitler, M.T., & Parkinson, B.A. (2005). Dye sensitization of the anatase (101) crystal surface by a series of dicarboxylated thiacyanine dyes. J. Am. Chem. Soc., 127, 5158-5168.
    Wang, C.C., & Ying, J.Y. (1999). Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater, 11, 3113-3120.
    Wang, P., Zakeeruddin, S.M., Humphry-Baker, R., Moser, J.E., & Grätzel, M. (2003). Molecular-scale interface engineering of TiO2 nanocrystalline: improving the efficiency and stability of dye-sensitized solar cells. Advanced Materials, 15, 2101-2104.
    Wang, Z.S., Cui, Y., Yasufumi D.O., Kasada, C., Shinpo, A., & Hara, K. (2007). Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: electron lifetime improved by coadsorption of deoxycholic acid. J. Physical Chemistry C, 111, 7224-7230.
    Wang, Z.S., Huang, C.H., Huang, Y.Y., Hou, Y.J., Xie, P.H., Zhang, B.W., & Cheng, H.M. (2001). A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 Nanoporous Electrode. Chem. Mater, 13(2), 678-682.
    Wang, Z.S., Sayama, K., & Sugihara, H. (2005). Efficient Eosin Y dye-sensitized solar cell containing Br-/Br3- electrolyte. J. Phys. Chem. B, 109, 22449-22455.
    Wongcharee, K., Meeyoo, V., & Chavadej, S. (2007). Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials & Solar Cells, 91, 566-571.
    Wang, X.F., Xiang, J.F., Wang, P., Koyama, Y., Yanagida, S., Wada, Y., Hamada, K., Sasaki, S., & Tamiaki, H. (2005). Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacer. Chemical Physics Letters, 408, 409-414.
    Wang, X.F., Kakitani, Y., Xiang, J.F., Koyama, Y., Rondonuwu, F.S., Nagae, H., Sasaki, S., & Tamiaki, H. (2005). Generation of carotenoid radical cation in the vicinity of a chlorophyll derivative bound to titanium oxide, upon excitation of the chlorophyll derivative to the Qy state, as identified by time-resolved absorption spectroscopy. Chemical Physics Letters, 416, 229-233.
    Wang, P., Zakeeruddin, S.M., & Grätzel M. (2004). Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells. J. Fluorine Chemistry, 125, 8, 1241-1245.
    Yishay Diamant, S., Chen, S.G., Melamed, O., & Zaban, A. (2003). Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 Core. J. Phys. Chem. B, 107, 1977-1981.
    Yoshida, T., Iwaya, M., Ando, H., Oekermann, T., Nonomura, K., Schlettwein, D., Wöhrlec, D., & Minoura, H. (2004). Improved photoelectron -chemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption. Chemical Communications, 4, 400-401.
    Yum, J.H., Jang, S.R., Walter, P., Geiger, T. Nuesch, F., Kim, S.H., Ko, J.J., Gratzel, M., & Nazeeruddin, M.K. (2007). Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizer. Chemical Communications, 44, 4680-4682.
    Zhao, W., Hou, Y.J., Wang, X.S., Zhang, B.W., Cao, Y., Yang, R., Wang, W.B., & Xiao, X.R. (1999). Study on squarylium cyanine dyes for photoelectric conversion. Solar Energy Materials & Solar Cells , 58, 173-183.
    Zhang, D.S., Yoshida, T., Oekermann, T., Furuta, K., & Minoura, H. (2006). Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Adv. Funct. Master., 16, 1228-1234.
    Zhang, D.S., & Xiao, X.R. (2003). A dye-sensitized nanocrystalline solid state photovoltaic cell. Chinese Chemical Letters, 11, 813-814.
    Zhang, D., Yoshida, T., & Minoura, H. (2002). Low temperature synthesis of porous nanocrystalline TiO2 thick film for dye-sensitized solar sells by hydrothermal crystallization. Chemistry Letter, 9, 874-875.
    Zhang, D.S., Wang, W.B., Liu, Y., Xiao, X.R., Zhao, W., Zhang B.W., & Cao, Yi. (2000). Photosensitization of nanocrystalline TiO2 electrodes by squarylium cyanine incorporated with a ruthenium bipyridyl complex. J. Photochemistry and Photobiology A: Chemistry, 135, 235-240.
    Zuo, P., Li, C., Wu, Y.S., Ai, X.C., Wang, X.S., Zhang, B.W., & Zhang, J.P. (2006). Mechanism of squarylium cyanine and Ru(dcbpy)2(NCS)2 co-sensitization of colloidal TiO2. J. Photochemistry and Photobiology A: Chemistry, 183, 138-145.

    下載圖示 校內:2012-07-15公開
    校外:立即公開
    QR CODE