簡易檢索 / 詳目顯示

研究生: 廖勇明
Leomitro, Nikodemus
論文名稱: 使用自然與回收物質運用在黏土質砂之地盤改良
Ground Improvement in Clayey Sand Using Natural and Recycle Materials
指導教授: 吳建宏
Wu, Jian-Hong
李德河
Lee, Der-Her
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 166
中文關鍵詞: 非凝聚性土壤石灰穩定回收材料夯實試驗直接剪力試驗
外文關鍵詞: Cohesion-less soil, Lime stabilization, Recycle materials, Compaction test, Direct shear test.
相關次數: 點閱:125下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,意識到氣候變遷的發生,對大地工程師來說,適應氣候變遷對大地工程的影響,是一個很大的挑戰。在基礎建設需求很大的發展中國家,常面臨的土壤問題是非凝聚性土壤的強度較弱,需要進行土壤改良使土壤強度提升。本研究採用的土壤穩定技術,是利用天然及回收材料來提高土壤強度,優點是材料容易取得,在適當的混合比例下,能夠降低構造物的預算,並且達到環境友善的目的。本研究將2%、5%及10%的生石灰做為天然黏合劑分別加入含有2%、5%及10%稻殼灰(RHA)的土壤中,再將長度小於1公分的椰子纖維(CF)以2%的比例,分別加入強度最強以及最弱的試體中,並將純砂試體養護0天(3小時),含有椰子纖維以及未含有椰子纖維的試體分別養護7、14、28、56、90、150、200天。最後,透過以下試驗:比重試驗、粒徑分析試驗、阿太堡限度試驗、滲透性試驗、夯實試驗以及直剪試驗求得本研究之土壤基本性質參數。結果發現,依照比例添加稻殼灰(RHA)會降低最大乾密度,但是會提高最佳含水量,此外,天然和回收材料是能夠有效改善土壤強度參數C、ф的技術。

    Realized climate change is happening in this era, it is one of a big challenge for geotechnical engineers to adopt impact of climate change in geotechnical projects. During highly infrastructures demand in developing countries, soil problems is often faced with cohesion-less soil which has weak of strength, it may to be improved to make the soil is suitable to use. Soil stabilization technique conducted in this research which using natural and recycled materials to improve soil strength. The materials are easy to obtain, it will decrease the construction budget and achieve environmental friendly in suitable mixture proportion. Quick lime as natural binder material was added into the soil at 2%, 5% and 10% followed Rice Husk Ash (RHA) by 2%, 5%, and 10%. Coconut Fiber (CF) were added into strongest and weakest specimens at 2% with ≤ 1 cm of length. The samples were cured for 0 days (3 hours) for pure sand proportion, 7, 14, 28, 56, 90, 150, 200 days for without CF proportions, and 7, 14, 28, 56 days with CF. Basic properties of soil in this research are decided to conduct the following test: specific gravity determination, grain size analysis, Atterberg limits, permeability test, compaction test, and direct shear test. Added RHA into proportion will decrease the Maximum Dry Density, however, improve the Optimum Moisture Content. The results are found that the stabilization using natural and recycled materials are an effective technique to improve soil strength and parameters for c and ф.

    CONTENTS ABSTRACT III ACKNOWLEDGEMENT VI CONTENTS VIII FIGURES LIST X TABLES LIST XII CHAPTER I INTRODUCTION 1 1.1 Background Research 1 1.2 Objective and Motivation 4 1.3 Hypothesis 5 1.4 Research Limitation 5 1.5 Research Methods 5 CHAPTER II LITERATURE REVIEW 8 2.1 Soil Stabilization 8 2.1.1 Improvement Materials 8 2.1.2 Study and Some Application of Soil Stabilization 12 2.2 Shear Strength of Soils 13 CHAPTER III RESEARCH METHOD 18 3.1 Specific Gravity of Soil 19 3.2 Grain Size Distribution Analysis 22 3.2.1 Hydrometer Test 25 3.2.2 Mechanical Test 27 3.2.3 Liquid Limit Test 28 3.2.4 Classification Of Soils For Engineering 32 3.3 Constant Head Permeability Test 32 3.4 Proportion Determination and Compaction Test 36 3.5 Preparing Samples and Direct Shear Test 42 3.5.1 Preparing Samples 42 3.5.2 Direct Shear Test 45 CHAPTER IV RESEARCH RESULT 50 4.1 Specific Gravity of Soil Test 50 4.2 Grain Size Distribution Analysis 51 4.3 Liquid Limit Test and Plasticity Index 58 4.4 Soil Classification 60 4.5 Constant Head Permeability Test 61 4.6 Compaction Test and Samples Preparation 63 4.7 Direct Shear Test 68 CHAPTER V CONCLUSIONS AND RECOMMENDATIONS 99 5.1 Conclusions 99 5.2 Recommendations 100 REFERENCES 101 APPENDICES 105 Appendix 1 Shea。r Stress with Horizontal Displacement Curve witho。ut Coconut Fiber 105 Appendix 2 Shear Stress without Coconut Fiber within Curing Time Period 134 Appendix 3 Shear Stress with Horizontal Displacement Curve Using Coconut Fiber 140 Appendix 4 Shear Stress Using Coconut Fiber within Curing Time Period 144 Appendix 5 Shear Stress with Normal Stress without Coconut Fiber 145 Appendix 6 Shear Stress with Normal Stress Using Coconut Fiber 159 Appendix 7 Shear Stress with Horizontal Displacement Using Coconut Fiber (Length Check) 161 Appendix 8 Shear Stress with Horizontal Displacement Using Coconut Fiber (Percentage Check) 164 Appendix 9 Comments From the Oral Defense Committee Members 165

    1. Alhassan, M., & Mustapha, A. M. (2007). Effect of rice husk ash on cement stabilized Laterite. Leonardo Electronic Journal of Practies and Technologies(11 July 2007), 47-58.
    2. ASTM. (2000). Permeability of granular soils (constant head) doi:10.1520/d2434-68.
    3. ASTM. (2004). Classification of soils and soil-aggregate mixtures for highway construction purposes. doi:10.1520/d3282-93.
    4. ASTM. (2007). Standard test method for particle-zize analysis of soils. doi:10.1520/d0422-63r07.
    5. ASTM. (2012). Direct shear test of soils under consolidated drained conditions. doi:10.1520/d3080_d3080m-11.
    6. ASTM. (2014). Specific gravity of soil solids by water pycnometer. doi:10.1520/d0854-14.
    7. ASTM. (2015). Laboratory compaction characteristics of soil using Standard Effort. doi:10.1520/d0698-12e01.
    8. ASTM. (2017). Classification of soils for engineering purposes (unified soil classification system). doi:10.1520/d2487-17.
    9. ASTM. (2018). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. doi:10.1520/D4318-17E01.
    10. Behak, L., & Musso, M. (2016). Performance of low-volume roads with wearing course of silty sand modified with rice husk ash and lime. Transportation Research Procedia, 18(13 December 2016), 93-99. doi:10.1016/j.trpro.2016.12.013.
    11. Brooks, R. M. (2009). Soil stabilization with fly ash and rice husk ash. International Journal of Research and Reviews in Applied Sciences, 1(3 December 2009), 209-217.
    12. Budhu, M. (2000). Soil mechanics and foundations: Wiley.
    13. Chauhan, M. S., Mittal, S., & Mohanty, B. (2008). Performance evaluation of silty sand subgrade reinforced with fly ash and fibre. Geotextiles and Geomembranes, 26(5 February 2008), 429-435. doi:10.1016/j.geotexmem.2008.02.001.
    14. Cruz, R. V., Harasawa, H., Lal, M., Wu, S., Anokhin, Y., & Punsalmaa, B. (2007). Asia climate change 2007:Impact, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., 469-506.
    15. Danso, H. (2017). Properties of coconut, oil palm and bagasse fibres:As Potential Building Materials. 3rd International Conference on Natural Fibers: Advanced Materials For a Greener World, ICNF(21 June 2017), 1-9. doi:10.1016/j.proeng.2017.07.002.
    16. Das, B. M. (2004). Principles of foundation engineering: Thomson/Brooks/Cole.
    17. Dyer, M. (2004). Performance of flood embankment in england and wales. Water Management, 4, 17-186.
    18. Google, M. (2018). Li-shing campus & laboratory of national cheng kung university. Retrieved from https://www.google.com/maps/.
    19. Handy, R. L., & Spangler, M. G. (2007). Geotechnical engineering:Soil and foundation principles and practice, 5th Ed: McGraw-Hill Education.
    20. Harichane, K., Ghrici, M., & Kenai, S. (2011). Effect of curing time on shear strength of cohesive soils stabilized with combination of lime and natural pozzolana. International Journal of Civil Engineering;Geotechnical Engineering, 9, 90-96.
    21. Jha, J. N., & Gill, K. S. (2006). Effect of rice husk ash on lime stabilization of Soil. IE(I) Journal-CV, 87(7 July 2006), 33-39.
    22. Kalinski, M. E. (2006). soil mechanics lab manual:Wiley.
    23. Karatai, T. R., Kaluli, J. W., Kabubo, C., & Thiong’o, G. (2017). Soil stabilization using rice husk ash and natural lime as an alternative to cutting and filling in road construction. Journal of Construction Engineering and Management, 143(5). doi:10.1061/(asce)co.1943-7862.0001235.
    24. Kumar, A., & Gupta, D. (2015). Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures. Geotextiles and Geomembranes, 44(13 August 2015), 466-474. doi:10.1016/j.geotexmem.2015.07.010.
    25. Liu, C., & Evett, J. B. (2009). Soil properties:Testing, measurement, and evaluation: Pearson/Prentice Hall.
    26. McCarthy, D. F. (2007). Essentials of soil mechanics and foundations:Basic Geotechnics (7th ed. ed.): Upper Saddle River, N.J. : Pearson/Prentice Hall, c2007.
    27. Mutohar, A. S., & Hantoro, G. (2003). Influence of rice husk ash and lime on engineering properties clayey. EJGE, 8(9 September 2003), 1-13.
    28. Nasiri, M. (2016). Optimum utilization of rice husk ash for stabilization of sub-base materials in construction and repair projects of forest roads. (2 February 2016), 333-343.
    29. Oya, A., Nakui, H., Fujitomo, M., & Fukagawa, R. (2017). Effects of initial water content and rice straw on the unconfined compression characteristics of soil improved using locally generated materials. Proceedings of the 1st Joint Seminar on Landslide, Flood Disaters and the Environmental, 1(2017), 1-8.
    30. Oya, A., Okumoto, R., Fujimoto, M., FUkagawa, R., & Lee, D. H. (2014). Study on mechanical characteristics of improved soil using quick lime and rice husk ash for riverbank erosion around cultural heritage. 歴史都市防災論文集, 8(July 2014), 139-144.
    31. Powrie, W. (2002). Soil mechanics:Concepts and applications, second edition: CRC Press.
    32. Raj, R. R., Banupriya, S., & Dharani, R. (2016). Stabilization of soil using rice husk ash. International Journal of Computational Engineering Research, 6(2 February 2016), 43-50.
    33. Sapir, D. G., Hoyois, P., & Below, R. (2012). Annual disaster statistical review:The Numbers and Trends.
    34. Schipper, L. (2014). Disaster, climate change and development:Reducing risk by tackling the drivers of vulnerability.
    35. UNFCCC. (2007). Climate change:Impacts, vulnerabilities and adaptation in developing countries.
    36. Vardon, P. J. (2015). Climatic influence on geotechnical infrastructure: a review. Environmental Geotechnics, 2(3), 166-174. doi:10.1680/envgeo.13.00055.
    37. Verma, D., & Gope, P. C. (2015). The use of coir/coconut fibers as reinforcements in composites. In Biofiber Reinforcements in Composite Materials (pp. 285-319).
    38. Verma, D., Gope, P. C., Shandilya, A., & Gupta, A. (2013). Coir fiber reinforcement and application in polymer composites:A Review. Journal of Materials and Environmental Sciences, 4, 263-276.
    39. Vishnu, T. C., Rasheed, R., Shadiya, K., Sreelakshmi, T. R., & Parvathy, K. M. (2016). Soil stabilization using rice husk ash, lime and jute. International Journal of Civil Engineering, 3(2 February 2016), 20-29.
    40. Viswanadham. (2017). Soil mechanics (Vol. Lecture 7). Department of Civil Engineering, Indian Institute of Technology, Bombay.
    41. Wen Hwei, H. (1986). Rice hull rice:Production and utilization. AVI Publishing Company Inc: Westport Connection, California, USA.
    42. 吳盈君, 李德河, 陳亭妤, 葉昭旻 (Wu, Y.C., Lee, D.H., Chen, T.Y., Yeh, C.M.) (2018)。養灰時間對修復用灰作性質影響之研究. 委託單位:文化部文化資產局.研究單位:國立臺南藝術大學.
    43. 顏黃暉 (Yen, H.H.) (2005)。利用飛灰與石灰改良黏土之一些工程性質研究。 淡江大學土木工程學系研究所碩士論文。
    44. 李泓銘 (Lee, H.M.) (2005)。傳統灰漿材料之特性與配比最佳化之探討。國立成功大學土木工程研究所碩士論文.
    45. 徐明亨 (Hsu, M.H.) (2008)。傳統石灰砂漿之配比與強度性質研究。國立交通大學土木工程學系碩士班碩士論文。

    下載圖示 校內:2024-02-10公開
    校外:2024-02-10公開
    QR CODE