| 研究生: |
楊崴翔 Yang, Wei-Siang |
|---|---|
| 論文名稱: |
利用電漿輔助化學氣相沉積法成長氮化銦鎵與P型氮化鎵應用於發光二極體之研究 Growths of InGaN and P-type GaN by Plasma-Enhanced Chemical Vapor Deposition for GaN Light Emitting Diode Applications |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 電漿輔助化學氣相沉積法 、奈米柱 、氮化鎵 、氮化銦鎵 、氮化鎂 、p−n接面 、電致發光 、單一量子井 、發光二極體 |
| 外文關鍵詞: | PECVD, GaN, nanowires, InGaN, LEDs |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於氮化鎵具有極佳之光電特性,常用以製作發光二極體、雷射二極體、太陽能電池、光感測元件、高功率電晶體以及高載子遷移率電晶體。一維奈米結構具有高比表面積與低缺陷濃度之特性,已廣泛地應用於各種光電元件之製作。本研究將結合氮化鎵與一維奈米結構之優勢,以本實驗室自行開發之爐管型電漿輔助化學氣相沉積設備,成長一維氮化鎵奈米結構。我們以自組裝之成長機制來成長氮化鎵晶體,並以鎵金屬與氮氣作為氮化鎵之前驅物。
本研究成功在n+ Si基板上成長出垂直於基板表面之高光學特性氮化鎵奈米柱。另外,以氮化鎂(Mg3N2)粉末作為摻雜物質,以成長出p-n接面氮化鎵奈米柱,並藉由氮化鎂來源溫度的控制來改變鎂的摻雜量,以期能成長出最高電洞濃度的P型氮化鎵晶體。我們也製作出p-n接面氮化鎵奈米柱元件來量測電性,結果是元件有整流曲線特性,但遺憾的是未能觀測到光輻射出現,分析可能原因有三種,一是提供的電流密度不夠高;二是因奈米線的比表面積高,表面存在許多懸鍵,形成表面缺陷能階,導致非輻射複合機率增加;三是電子溢流,導致內部量子效率變低。為了配合發光層的製作,我們也嘗試降低成長P型氮化鎵的基板溫度,以避免氮化銦鎵晶體的熱裂解,結果顯示高溫成長出的p-n接面氮化鎵奈米柱為軸向結構,但低溫成長出的p-n接面氮化鎵奈米柱則為核殼結構,且低溫成長p型氮化鎵會使晶體品質變差。
我們的發光層是成長單層氮化銦鎵晶體在氮化鎵奈米柱上,結果顯示我們成長出的氮化銦鎵晶體組成約為In0.12Ga0.88N,假如以此作為發光層,發出的光波段會落在紫光區(407 nm),,但作為發光層需有高晶體品質特性,所以我們之後需提升晶體品質,讓PL光譜不再有黃光缺陷發光出現,造成晶體品質降低的原因應是III/V比不足所造成,改善後以期能獲得更高效率的輻射發光。
This article describes the growths of vertically aligned p-n junction GaN nanowires and InGaN/GaN nanowires on Si (100) substrates grown by plasma-enhanced chemical vapor deposition technique. The resultant p-n junction nanowires have an axial structure when the growth temperature of p-type GaN is 950℃. However, the p-n junction nanowires become a core-shell structure when the growth temperature of p-type GaN is 830℃. The current-voltage characteristics of these nanowires shows that the resistance of device is very high. The reason may be the nanowires with high resistance or the residual insulating layer between electrodes and nanowires. There are three potential reason which block the radiation of the device. First, the current density is too low to excite enough light intensity. Second, the high surface-to-volume ratio of nanowires induces Shockley-Read-Hall recombination. It reduces the internal quantum efficiency of the LED device. Final, without the existence of active layer, electron overflow also reduces the internal quantum efficiency of the LED device. The InGaN/GaN nanowires have a core-shell structure and the composition of InGaN is In0.12Ga0.88N. The emitting light locates in the purple light region by photoluminescence.
1. 楊素華,蔡泰成(2005),太陽能電池,Available from: http://203.145.193.110/NSC_INDEX/Journal/EJ0001/9406/9406-09.pdf.
2. 許世杰(2014),節能照明技術—淺談發光二極體,,Available from: http://scimonth.blogspot.tw/2014/03/blog-post_9580.html.
3. Owen Comstock and Kevin Jarzomski(2014), LED bulb efficiency expected to continue improving as cost declines. Available from: http://www.eia.gov/todayinenergy/detail.cfm?id=15471
4. Yiying Wu and Peidong Yang(2001), "Direct Observation of Vapor−Liquid−Solid Nanowire Growth", Journal of the American Chemical Society, 123(13) pp. 3165-3166.
5. D Gogova, G R Yazdi, L Hultman, M Syvajarvi, P O A Persson, R Fornari, and R Yakimova(2009), "Aligned AlN nanowires by self-organized vapor-solid growth", Nanotechnology, 20 pp. 495304.
6. R. Q. Zhang, Y. Lifshitz, and S. T. Lee(2003), "Oxide-Assisted Growth of Semiconducting Nanowires", Advanced Materials, 15(7-8) pp. 635-640.
7. Yu-Chiao Lin and Wen-Tai Lin(2005), "Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders", Nanotechnology, 16 pp. 1648-1654.
8. B. Gates, B. Mayers, B. Cattle, and Y. Xia(2002), "Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium", Advanced Functional Materials, 12(3) pp. 219-227.
9. Maojun Zheng, Lide Zhang, Xinyi Zhang, Jun Zhang, and Guanghai Li(2001), "Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes", Chemical Physics Letters, 334(4–6) pp. 298-302.
10. Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, and William E. Buhro(1995), "Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth", Science, 270(5243) pp. 1791-1794.
11. Shu-Hong Yu, Jian Yang, Zhao-Hui Han, Ru-Yi Yang, Yi-Tai Qian, and Yu-Heng Zhang(1999), "Novel Solvothermal Fabrication of CdSxSe1−x Nanowires", Journal of Solid State Chemistry, 147(2) pp. 637-640.
12. H. J. Round(1907), "A Note on Carborundum", Electrical World, 49 pp. 309.
13. E. F. Schubert(2006), Light Emitting Diodes(2nd ed.), New York: Cambridge University Press.
14. Akihiko Kikuchi, Makoto Tada, Kyoko Miwa, and Katsumi Kishino. Growth and characterization of InGaN/GaN nanocolumn LED. 2006.
15. Shuji Nakamura, Yasuhiro Harada, and Masayuki Seno(1991), "Novel metalorganic chemical vapor deposition system for GaN growth", Applied Physics Letters, 58(18) pp. 2021-2023.
16. V. W. L. Chin, T. L. Tansley, and T. Osotchan(1994), "Electron mobilities in gallium, indium, and aluminum nitrides", Journal of Applied Physics, 75(11) pp. 7365-7372.
17. S. Strite and H. Morkoç(1992), "GaN, AlN, and InN: A review", Journal of Vacuum Science & Technology B, 10(4) pp. 1237-1266.
18. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns(1994), "Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies", Journal of Applied Physics, 76(3) pp. 1363-1398.
19. S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren(1999), "GaN: Processing, defects, and devices", Journal of Applied Physics, 86(1) pp. 1-78.
20. S. Nakamura, S. Pearton, and G. Fasol(2000), The Blue Laser Diode : The Complete Story(2nd ed.), Berlin: Springer-Verlag.
21. S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H. H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg(2011), "Polarity and Its Influence on Growth Mechanism during MOVPE Growth of GaN Sub-micrometer Rods", Crystal Growth & Design, 11(5) pp. 1573-1577.
22. Kenji Harafuji, Taku Tsuchiya, and Katsuyuki Kawamura(2004), "Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal", Journal of Applied Physics, 96(5) pp. 2501-2512.
23. Feng Shi(2011), GaN Nanowires Fabricated by Magnetron Sputtering Deposition. Available from: http://www.intechopen.com/books/nanowires-fundamental-research/gan-nanowires-fabricated-by-magnetron-sputtering-deposition
24. Yu Huang, Xiangfeng Duan, Yi Cui, and Charles M. Lieber(2002), "Gallium Nitride Nanowire Nanodevices", Nano Letters, 2(2) pp. 101-104.
25. Nakamura Shuji(1991), "GaN Growth Using GaN Buffer Layer", Japanese Journal of Applied Physics, 30(10A) pp. L1705.
26. Raffaella Calarco, Michel Marso, Thomas Richter, Ali I. Aykanat, Ralph Meijers, André V.D. Hart, Toma Stoica, and Hans Lüth(2005), "Size-dependent Photoconductivity in MBE-Grown GaN−Nanowires", Nano Letters, 5(5) pp. 981-984.
27. N. A. Sanford, P. T. Blanchard, K. A. Bertness, L. Mansfield, J. B. Schlager, A. W. Sanders, A. Roshko, B. B. Burton, and S. M. George(2010), "Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy", Journal of Applied Physics, 107(3) pp. 034318.
28. Toma Stoica and Raffaella Calarco(2011), "Doping of III-Nitride Nanowires Grown by Molecular Beam Epitaxy", Selected Topics in Quantum Electronics, IEEE Journal of, 17(4) pp. 859-868.
29. K. Jeganathan, R. K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grützmacher, and H. Lüth(2009), "Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires", Journal of Applied Physics, 105(12) pp. -.
30. E. Monroy, T. Andreev, P. Holliger, E. Bellet-Amalric, T. Shibata, M. Tanaka, and B. Daudin(2004), "Modification of GaN(0001) growth kinetics by Mg doping", Applied Physics Letters, 84(14) pp. 2554-2556.
31. Amano Hiroshi, Kito Masahiro, Hiramatsu Kazumasa, and Akasaki Isamu(1989), "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)", Japanese Journal of Applied Physics, 28(12A) pp. L2112.
32. Nakamura Shuji, Iwasa Naruhito, Senoh Masayuki, and Mukai Takashi(1992), "Hole Compensation Mechanism of P-Type GaN Films", Japanese Journal of Applied Physics, 31(5R) pp. 1258.
33. Nakamura Shuji, Mukai Takashi, Senoh Masayuki, and Iwasa Naruhito(1992), "Thermal Annealing Effects on P-Type Mg-Doped GaN Films", Japanese Journal of Applied Physics, 31(2B) pp. L139.
34. W. Gotz, N. M. Johnson, D. P. Bour, M. D. Mccluskey, and E. E. Haller(1996), "Local vibrational modes of the Mg–H acceptor complex in GaN", Applied Physics Letters, 69(24) pp. 3725-3727.
35. H. Harima, T. Inoue, S. Nakashima, M. Ishida, and M. Taneya(1999), "Local vibrational modes as a probe of activation process in p-type GaN", Applied Physics Letters, 75(10) pp. 1383-1385.
36. C. W. Chin, F. K. Yam, K. P. Beh, Z. Hassan, M. A. Ahmad, Y. Yusof, and S. K. Mohd Bakhori(2011), "The growth of heavily Mg-doped GaN thin film on Si substrate by molecular beam epitaxy", Thin Solid Films, 520(2) pp. 756-760.
37. E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed(2006), "The effect of Mg doping on GaN nanowires", Nanotechnology, 17(23) pp. 5735.
38. Guosheng Cheng, Andrei Kolmakov, Youxiang Zhang, Martin Moskovits, Ryan Munden, Mark A. Reed, Guangming Wang, Daniel Moses, and Jinping Zhang(2003), "Current rectification in a single GaN nanowire with a well-defined p–n junction", Applied Physics Letters, 83(8) pp. 1578-1580.
39. Zhaohui Zhong, Fang Qian, Deli Wang, and Charles M. Lieber(2003), "Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices", Nano Letters, 3(3) pp. 343-346.
40. John R. Soulen, Prasom Sthapitanonda, and John L. Margrave(1955), "Vaporization of Inorganic Substances: B2O3, TeO2 and Mg3N2", The Journal of Physical Chemistry, 59(2) pp. 132-136.
41. Tevye Kuykendall, Philipp Ulrich, Shaul Aloni, and Peidong Yang(2007), "Complete composition tunability of InGaN nanowires using a combinatorial approach", Nat Mater, 6(12) pp. 951-956.
42. Shuji Nakamura, Takashi Mukai, and Masayuki Senoh(1994), "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes", Applied Physics Letters, 64(13) pp. 1687-1689.
43. Akasaki Isamu and Amano Hiroshi(1997), "Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters", Japanese Journal of Applied Physics, 36(9R) pp. 5393.
44. Hiroto Sekiguchi, Katsumi Kishino, and Akihiko Kikuchi(2010), "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate", Applied Physics Letters, 96(23) pp. -.
45. F. K. Yam and Z. Hassan(2008), "InGaN: An overview of the growth kinetics, physical properties and emission mechanisms", Superlattices and Microstructures, 43(1) pp. 1-23.
46. Powerstream Technology(2014), Vapor Pressure of the Chemical Elements. Available from: http://www.powerstream.com/vapor-pressure.htm
47. Hironori Komaki, Ryuji Katayama, Kentaro Onabe, Masashi Ozeki, and Tetsuo Ikari(2007), "Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE", Journal of Crystal Growth, 305(1) pp. 12-18.
48. Shunfeng Li and Andreas Waag(2012), "GaN based nanorods for solid state lighting", Journal of Applied Physics, 111(7) pp. -.
49. D. Zubia and S. D. Hersee(1999), "Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials", Journal of Applied Physics, 85(9) pp. 6492-6496.
50. Andreas Waag, Xue Wang, Sönke Fündling, Johannes Ledig, Milena Erenburg, Richard Neumann, Mohamed Al Suleiman, Stephan Merzsch, Jiandong Wei, Shunfeng Li, Hergo H. Wehmann, Werner Bergbauer, Martin Straßburg, Achim Trampert, Uwe Jahn, and Henning Riechert(2011), "The nanorod approach: GaN NanoLEDs for solid state lighting", physica status solidi (c), 8(7-8) pp. 2296-2301.
51. Hong Jin Fan, Peter Werner, and Margit Zacharias(2006), "Semiconductor Nanowires: From Self-Organization to Patterned Growth", Small, 2(6) pp. 700-717.
52. Seryogin George, Shalish Ilan, Moberlychan Warren, and Narayanamurti Venkatesh(2005), "Catalytic hydride vapour phase epitaxy growth of GaN nanowires", Nanotechnology, 16(10) pp. 2342.
53. Jianye Li, Chenguang Lu, Benjamin Maynor, Shaoming Huang, and Jie Liu(2004), "Controlled Growth of Long GaN Nanowires from Catalyst Patterns Fabricated by “Dip-Pen” Nanolithographic Techniques", Chemistry of Materials, 16(9) pp. 1633-1636.
54. R. S. Wagner and W. C. Ellis(1964), "VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH", Applied Physics Letters, 4(5) pp. 89-90.
55. Baodan Liu, Yoshio Bando, Tang Chengchun, Fangfang Xu, and D. Golberg(2005), "Quasi-aligned single-crystalline GaN nanowire arrays", Applied Physics Letters, 87(7) pp. 073106-073106-3.
56. Yong-Bing Tang, Xiang-Hui Bo, Chun-Sing Lee, Hong-Tao Cong, Hui-Ming Cheng, Zhen-Hua Chen, Wen-Jun Zhang, Igor Bello, and Shuit-Tong Lee(2008), "Controllable Synthesis of Vertically Aligned p-Type GaN Nanorod Arrays on n-Type Si Substrates for Heterojunction Diodes", Advanced Functional Materials, 18(21) pp. 3515-3522.
57. Wen-Chi Hou, Liang-Yih Chen, Wei-Che Tang, and Franklin C. N. Hong(2011), "Control of Seed Detachment in Au-Assisted GaN Nanowire Growths", Crystal Growth & Design, 11(4) pp. 990-994.
58. Wen-Chi Hou, Liang-Yih Chen, and Franklin Chau-Nan Hong(2008), "Fabrication of gallium nitride nanowires by nitrogen plasma", Diamond and Related Materials, 17(7–10) pp. 1780-1784.
59. Hou Wen Chi and Hong Franklin Chau-Nan(2009), "Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires", Nanotechnology, 20(5) pp. 055606.
60. Wen-Chi Hou, Tung-Hsien Wu, Wei-Che Tang, and Franklinchau-Nan Hong(2012), "Nucleation control for the growth of vertically aligned GaN nanowires", Nanoscale Research Letters, 7(1) pp. 1-6.
61. Eric A. Stach, Peter J. Pauzauskie, Tevye Kuykendall, Joshua Goldberger, Rongrui He, and Peidong Yang(2003), "Watching GaN Nanowires Grow", Nano Letters, 3(6) pp. 867-869.
62. V. Purushothaman, V. Ramakrishnan, and K. Jeganathan(2012), "Interplay of VLS and VS growth mechanism for GaN nanowires by a self-catalytic approach", RSC Advances, 2(11) pp. 4802-4806.
63. Jessica L. Lensch-Falk, Eric R. Hemesath, Daniel E. Perea, and Lincoln J. Lauhon(2009), "Alternative catalysts for VSS growth of silicon and germanium nanowires", Journal of Materials Chemistry, 19(7) pp. 849-857.
64. S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross(2007), "Germanium Nanowire Growth Below the Eutectic Temperature", Science, 316(5825) pp. 729-732.
65. Caroline Chèze, Lutz Geelhaar, Oliver Brandt, Walterm Weber, Henning Riechert, Steffen Münch, Ralph Rothemund, Stephan Reitzenstein, Alfred Forchel, Thomas Kehagias, Philomela Komninou, Georgep Dimitrakopulos, and Theodoros Karakostas(2010), "Direct comparison of catalyst-free and catalyst-induced GaN nanowires", Nano Research, 3(7) pp. 528-536.
66. R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan(2005), "Luminescence from stacking faults in gallium nitride", Applied Physics Letters, 86(2) pp. -.
67. P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D. Hommel(2005), "Emission properties of a-plane GaN grown by metal-organic chemical-vapor deposition", Journal of Applied Physics, 98(9) pp. -.
68. Jinkyoung Yoo, Young-Joon Hong, Sung Jin An, Gyu-Chul Yi, Bonghwan Chon, Taiha Joo, Jong-Wook Kim, and Jeong-Soo Lee(2006), "Photoluminescent characteristics of Ni-catalyzed GaN nanowires", Applied Physics Letters, 89(4) pp. -.
69. C. Chèze, L. Geelhaar, B. Jenichen, and H. Riechert(2010), "Different growth rates for catalyst-induced and self-induced GaN nanowires", Applied Physics Letters, 97(15) pp. -.
70. Jelena Ristić, Enrique Calleja, Sergio Fernández-Garrido, Laurent Cerutti, Achim Trampert, Uwe Jahn, and Klaus H. Ploog(2008), "On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy", Journal of Crystal Growth, 310(18) pp. 4035-4045.
71. M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Muñoz, and R. Beresford(1998), "The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1)", Journal of Crystal Growth, 183(1–2) pp. 23-30.
72. Masaki Yoshizawa, Akihiko Kikuchi, Nobuhiko Fujita, Kouichi Kushi, Hajime Sasamoto, and Katsumi Kishino(1998), "Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0001) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks", Journal of Crystal Growth, 189–190(0) pp. 138-141.
73. K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov(2006), "Spontaneously grown GaN and AlGaN nanowires", Journal of Crystal Growth, 287(2) pp. 522-527.
74. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth(2007), "Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)", Applied Physics Letters, 90(12) pp. -.
75. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford(2007), "Nucleation conditions for catalyst-free GaN nanowires", Journal of Crystal Growth, 300(1) pp. 94-99.
76. Werner U. Boeglin(2011), PN-Junction. Available from: http://wanda.fiu.edu/teaching/courses/Modern_lab_manual/pn_junction.html
77. Hwa-Mok Kim, Yong-Hoon Cho, Hosang Lee, Suk Il Kim, Sung Ryong Ryu, Deuk Young Kim, Tae Won Kang, and Kwan Soo Chung(2004), "High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays", Nano Letters, 4(6) pp. 1059-1062.
78. K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa(2005), "Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence", Applied Physics Letters, 86(5) pp. -.
79. J. R. Roth(1995), Industrial plasma engineering-Volume 1: Principles Institute of Physics, Bristol and Philadelphia: Institute of Physics.
80. M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, S. Porowski, and T. D. Moustakas(1994), "Thermal expansion of gallium nitride", Journal of Applied Physics, 76(8) pp. 4909-4911.
81. G. Logan Desautels, Peter Powers, Chris Brewer, Mark Walker, Mark Burky, and Gregg Anderson(2008), "Optical temperature sensor and thermal expansion measurement using a femtosecond micromachined grating in 6H-SiC", Applied Optics, 47(21) pp. 3773-3777.
82. Keyan Zang and Soo Jin Chua(2010), "GaN based nanorod light emitting diodes by selective area epitaxy", physica status solidi (c), 7(7-8) pp. 2236-2239.
83. A. L. Bavencove, G. Tourbot, E. Pougeoise, J. Garcia, P. Gilet, F. Levy, B. André, G. Feuillet, B. Gayral, B. Daudin, and Le Si Dang(2010), "GaN-based nanowires: From nanometric-scale characterization to light emitting diodes", physica status solidi (a), 207(6) pp. 1425-1427.
84. Nguyen Hieu Pham Trung, Cui Kai, Zhang Shaofei, Fathololoumi Saeed, and Mi Zetian(2011), "Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon", Nanotechnology, 22(44) pp. 445202.
85. Shafat Jahangir, Animesh Banerjee, and Pallab Bhattacharya(2013), "Carrier lifetimes in green emitting InGaN/GaN disks-in-nanowire and characteristics of green light emitting diodes", physica status solidi (c), 10(5) pp. 812-815.
86. 吳東憲(2012),,以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用,,國立成功大學化學工程學系博士論文.
87. J. Karpiński, S. Porowski, and S. Miotkowska(1982), "High pressure vapor growth of GaN", Journal of Crystal Growth, 56(1) pp. 77-82.
88. Michael A. Reshchikov and Hadis Morkoç(2005), "Luminescence properties of defects in GaN", Journal of Applied Physics, 97(6) pp. -.
89. T. Suski, P. Perlin, H. Teisseyre, M. Leszczyński, I. Grzegory, J. Jun, M. Boćkowski, S. Porowski, and T. D. Moustakas(1995), "Mechanism of yellow luminescence in GaN", Applied Physics Letters, 67(15) pp. 2188-2190.
90. Keunjoo Kim and Joseph G. Harrison(2003), "Critical Mg doping on the blue-light emission in p-type GaN thin films grown by metal–organic chemical-vapor deposition", Journal of Vacuum Science & Technology A, 21(1) pp. 134-139.
91. M. A. Reshchikov, G. C. Yi, and B. W. Wessels(1999), "Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities", Physical Review B, 59(20) pp. 13176-13183.
92. M. A. Reshchikov, J. Xie, L. He, X. Gu, Y. T. Moon, Y. Fu, and H. Morkoç(2005), "Effect of potential fluctuations on photoluminescence in Mg-doped GaN", physica status solidi (c), 2(7) pp. 2761-2764.
93. Daisuke Iida, Kenta Tamura, Motoaki Iwaya, Satoshi Kamiyama, Hiroshi Amano, and Isamu Akasaki(2010), "Compensation effect of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy", Journal of Crystal Growth, 312(21) pp. 3131-3135.
94. H. Obloh, K. H. Bachem, U. Kaufmann, M. Kunzer, M. Maier, A. Ramakrishnan, and P. Schlotter(1998), "Self-compensation in Mg doped p-type GaN grown by MOCVD", Journal of Crystal Growth, 195(1–4) pp. 270-273.
95. M. Lachab, D. H. Youn, R. S. Qhalid Fareed, T. Wang, and S. Sakai(2000), "Characterization of Mg-doped GaN grown by metalorganic chemical vapor deposition", Solid-State Electronics, 44(9) pp. 1669-1677.
96. Ž Gačević, V. J. Gómez, N. García Lepetit, P. E. D. Soto Rodríguez, A. Bengoechea, S. Fernández-Garrido, R. Nötzel, and E. Calleja(2013), "A comprehensive diagram to grow (0001)InGaN alloys by molecular beam epitaxy", Journal of Crystal Growth, 364(0) pp. 123-127.
97. Wonseok Lee, Jae Limb, Jae-Hyun Ryou, Dongwon Yoo, Theodore Chung, and Russelld Dupuis(2006), "Influence of growth temperature and growth rate of p-GaN layers on the characteristics of green light emitting diodes", Journal of Electronic Materials, 35(4) pp. 587-591.
98. L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai, and J. K. Sheu(2003), "In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer", Solid-State Electronics, 47(11) pp. 2027-2030.
99. Min-Suk Oh, Min-Ki Kwon, Il-Kyu Park, Sung-Ho Baek, Seong-Ju Park, S. H. Lee, and J. J. Jung(2006), "Improvement of green LED by growing p-GaN on In0.25GaN/GaN MQWs at low temperature", Journal of Crystal Growth, 289(1) pp. 107-112.
100. S. L. Zhang, A. B. Djurišić, Y. F. Hsu, A. M. C. Ng, and M. H. Xie(2008), "Influence of different insulating polymers on the performance of ZnO nanorod based LEDs", 6988 pp. 69881O-69881O-8.
101. Hieu Pham Trung Nguyen, Kai Cui, Shaofei Zhang, Mehrdad Djavid, Andreas Korinek, Gianluigi A. Botton, and Zetian Mi(2012), "Controlling Electron Overflow in Phosphor-Free InGaN/GaN Nanowire White Light-Emitting Diodes", Nano Letters, 12(3) pp. 1317-1323.
102. J. L. Pau, C. Bayram, P. Giedraitis, R. Mcclintock, and M. Razeghi(2008), "GaN nanostructured p-i-n photodiodes", Applied Physics Letters, 93(22) pp. 221104-221104-3.
103. Yong-Ho Ra, R. Navamathavan, Ji-Hyeon Park, and Cheul-Ro Lee(2013), "High-Quality Uniaxial InxGa1–xN/GaN Multiple Quantum Well (MQW) Nanowires (NWs) on Si(111) Grown by Metal-Organic Chemical Vapor Deposition (MOCVD) and Light-Emitting Diode (LED) Fabrication", ACS Applied Materials & Interfaces, 5(6) pp. 2111-2117.
104. Sung Jin An and Yi Gyu-Chul(2007), "Near ultraviolet light emitting diode composed of n-GaN/ZnO coaxial nanorod heterostructures on a p-GaN layer", Applied Physics Letters, 91(12) pp. 123109-123109-3.
105. Nguyen Hieu Pham Trung, Djavid Mehrdad, Cui Kai, and Mi Zetian(2012), "Temperature-dependent nonradiative recombination processes in GaN-based nanowire white-light-emitting diodes on silicon", Nanotechnology, 23(19) pp. 194012.
106. Shuji Nakamura, Masayuki Senoh, Naruhito Iwasa, and Shin‐Ichi Nagahama(1995), "High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes", Applied Physics Letters, 67(13) pp. 1868-1870.
107. Kwak Joon seop, J. Cho, S. Chae, O. H Nam, C. Sone, and Y. Park(2001), "The Role of an Overlayer in the Formation of Ni-based Transparent Ohmic Contacts to p-GaN", Japanese Journal of Applied Physics, 40(11R) pp. 6221.
校內:2019-08-11公開