| 研究生: |
泰莎瑞 M, Sarah |
|---|---|
| 論文名稱: |
Identifying Ammonia and Nitrite Oxidizing Bacteria Responsible for Nitrification in Opto-Electronic Industrial Wastewater Identifying Ammonia and Nitrite Oxidizing Bacteria Responsible for Nitrification in Opto-Electronic Industrial Wastewater |
| 指導教授: |
黃良銘
Whang, Liang-Ming “Langmuir” Bruce DeVantier Bruce DeVantier |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 外文關鍵詞: | molecular method, Ammonia Oxidizing Bacteria |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Over the past decade Thin Film Transistor-Liquid Crystal Display (TFT-LCD) has become a rapidly growing optic-electronic industry. Manufacturing plants of TFT-LCD produce large amounts of high concentration industrial wastewater. In addition to organic carbon, such as dimethyl sulphoxide (DMSO, (CH3)2SO), TFT-LCD wastewater also contains significant amounts of organic nitrogen in the form of mono-ethanolamine (MEA, C2H5ONH2), and tetra-methyl ammonium hydroxide (TMAH, (CH3)4NOH). These organic nitrogen compounds make up 95% of the total nitrogen making it very difficult to meet water quality standards. This ratio is a significant difference from that of agricultural and municipal wastewater which averages a ratio of 80%. (Chen T.K. et al, 2003) This thesis studies the effects of Ammonia Oxidizing Bacteria (AOB) in the degradation of organic nitrogen compounds. Studies are done in both an Aerobic and an Annoxic/Oxic (AO) setting to compare the results of the AOB denitrification in two different sequencing batch reactors (SBR). The AOB activity will be monitored by measuring the water quality changes, as well as by using Molecular Methods such as Polymerase Chain Reaction (PCR), and Terminal Restriction Fragment Length Polymorphism (T-RFLP) to identify any changes in microbial communities throughout the treatment process. Experimental data show that a community of Nitrosomonas europaea seems to be the dominant AOB species contributing to the denitrification of the organic nitrogen in the industrial wastewater. Samples from the AO reactor are difficult to analyze, however communities of Ammonia Oxidizing Archaea (AOA) have been found by analyzing the PCR results that were conducted using AOA primers. Denitrification in both environments is apparent suggesting that the biological treatment of high concentration industrial wastewater containing DMSO, MEA, and TMAH is possible.
Abeliovich, A. and Vonshak, A. (1992) Anaerobic metabolism of Nitrosomonas europaea, Arch. Microbiol., 158, 267-280
Amman, R.I.; Binder, B.J.; Olson, R.J.; Chisholm, S.W.; Devereux, R., and Stahl,D.A. (1990) Combination of 16S rDNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations . Appl. Environ. Microbiol. 56(6), pp.1919-1925
Anderson, I.C. and Levine, J.S. (1986) Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers and nitrate respirers. Appl. Environ. Microbiol., 51, pp. 938-945
Anthonisen, A.C., Loehr R.C., Prakasam, T.B.S. and Srinath E.G. (1976). Inhibition of nitrification by ammonia and nitrous acid. Journal of Wtaer. Polluiont. Control Fed. 48, pp. 835-852
Barns, S.M., Fundyga, R.E., Jeffries, M.W., and Pace, N.R. (1994). Remarkable archael diversity in a Yellowstone National park hot spring environment. Proc. Natl. Acad. Sci. U.S.A. 91, pp. 1609-1613
Bentley MD, Douglas IB, Lacadie JA, Whittier DR (1972). The photolysis of dimethylsulphide in the air. Journal of Air Pollution Control Association;22: pp. 359-363
Bedard, C., and Knowles, R. (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+ and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev., 53, 68-84.
Bitton, G. (1980). Introduction to Environmental Virology. John Wiley & Sons, New York,
Bitton, G. (1999). Wastewater Microbiology 2nd Ed. John Wiley & Sons. New York.
Blackall, L.L., and Burrell, P.C. (1998) The microbiology of nitrogen removal in activated sludge systems in The Microbiology of Activated Sludge. (eds R.J. Seviour and L.L. Blackall), Chapman and Hall, London, pp. 203-226
Blackburn, T.H. (1983) The microbial nitrogen cycle, in Microbial Geochemistry (ed. W.E. Krumbein), Blackwell Scientific Publications, Oxford, pp. 63-89.
Bock, E. and Koops, H. (1992) Oxidation of inorganic nitrogen compounds as energy source, in The Prokaryotes 2nd Ed. (eds A. Balows, H.G; Truper, M. Dworkin, W. Harder, and K. Schleifer), Springer-Verlag, New York, pp. 2302-2309.
Bock, E., Koops, H.-P. and Harms, H. (1986) Cell biology of nitrifying bacteria, in Nitrification (ed. J.I. Prosser, IRL Press, Aberdeen, pp. 17-38.
Bock, E., Wilderer, P.A., and Freitag, A., (1988). Growth of Nitrobacter in the absence of dissolved oxygen. Water Res., 22, pp. 245-250
Bock, E., Koops, H., Moller, U.C. and Rudert, M. (1990). A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. Nov. Arch. Microbiol., 153, pp. 105-110
Bock, E., Koops, H-P., Harms, H. and Ahlers, B. (1991). The biochemistry of the nitrifying bacteria in Variations in Autotrophic Life (eds J.M. Shively and L.L. Barton) Academic Press, London, pp. 171-200
Bock, E., Koops, H., Ahlers, B. and Harms, H. (1992). Oxidation of inorganic nitrogen compounds as energy source, in The Prokaryotes (eds A. Balows, H.G. Truper, M. Dworkin, W. Harder and K. Schleifer), Springer-Verlag, 2nd Ed., New York, pp. 414-430
Bouchard, D.C., M.K. Williams, and F.X. Abad. (1993). Disinfection of human enteric viruses in water by copper:silver and reduced levels of chlorine. Water Sci. Technology. 27: pp. 351-356
Braam F. and Klapwijk A. (1981). Effect of copper on nitrification in activated sludge. Water Resources. 15, pp. 1093-1098
Bryan, A. (1993). Biological Nutrient Removal, QDPI Water Resources
Charles RJ, Lovelock JE, Andreate MO, Warren SG. (1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate nature;326: pp. 655-661
Chen, T.-K. Ni, C.-H., and Chen, J.-N. Biological nitrification and denitrification of opto-electronic industrial wastewater. In Water Science and Technology. Vol. 48, No. 8, pp. 27-34
Craun, G.F. (1984). Health aspects of groundwater pollution pp 135-179. In: Giadia and Giardiasis. (eds. S.L. Erlandsen and E.A. Meyers). Plenum, New York.
De Bont, J.A.M., van Dijken, J.P., and Harder, W., (1981). Dimethyl sulphoxide and Dimethyl sulphide as a carbon, sulfur, and energy source for growth of Hyphomicrobium S. J. of Gen. Microbiol. 127: pp.315-323
Dean, R.B., and E. Lund. (1981). Water Reuse: problems and Solutions. Academic Press, London
Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Saylor GS (2002). Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrosospira spp. From full scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol;68(1):245-53
Dow Chemical Company. (1980). The alkanolamine handbook. The Dow Chemical Company USA.
Drlica, Karl. (2004). Understanding DNA and Gene Coning: A guide for the Curious. 4th Edition. Hoboken, NJ: John Wiley & Sons,.
Echenfelder, W.W. (1980) Principles of Water Quality Management, 1st Ed, CBI Publishing Company Inc., Boston
Ehrich, S., Behrens, D., Lebedeva, E., Ludwig, W. and Brock, E. (1995) A new obigately chemolithotrophic, nitrite oxidizing bacterium Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch. Microbiol., 164,16-23
Fang, H., Chou, M. and Huang, C. (1993) Nitrification of ammonia nitrogen in refinery wastewater. Water Res., 27, pp. 1761-1765
Ford D.L. (1980) Comprehensive analysis of nitrification of chemical processing wastewaters. Journal.of Water pollution Control Fed. 52, 2726-2746
Freitag, A., Rudert, M. and Bock, E. (1987) Growth of Nitrobacter by dissimilatory nitrate reductions. FEMS Microbiol. Lett., 48, pp. 105-109
Frings, J., Wondrak, C., and Schink, B. (1994). Fermentative degredation of triethanolamine by homoacetogenic bacterium. Arch. Microbiol. 162: pp.103-107
Grady, C.P.Leslie JR.; Daigger,G..T.; and Lim, Henry C. (1999). Biological Wastewater Treatment Second Edition, Revised and Expanded. New York, NY. Marcel Dekker Inc.
Gerardi, M.H., (2006) Wastewater Bacteria, Hoboken, New Jersey, John Wiley and Sons,
Halling-Sørensen, B. and Jørgensen, S.E. (1993) Biological nitrification and denitrification, in The Removal of Nitrogen Compounds from Wastewater (eds. B. Halling-Sørensen and S.E. Jørgensen), Elsevier, Amsterdam, pp. 43-60.
Hammer, M.J. (1986). Water and Wastewater Technology. John Wiley & Sons, New York, 536 pp.
Hiorns WD, Hastings RC, Head IM, McCarthy AJ, Saunders JR, Pickup RW, Hall GH. (1995). Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in Appl. Environment. Microbiology; 141: pp. 2793-800
Hovanec, T.A., and DeLong, E.F., (1996) Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria. Appl. Environ.Microbial., 62, pp.2888-2896
Hung Lin-Lin, (2006) Thesis, National Cheng Kung University, Tainan, Taiwan.
Kane, M.D., Poulsen, L.K., Stahl, D.A., (1993). Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16s ribosomal RNA sequences. Appl. Evniron. Microbiol. 59(3), pp.682-686
Kaplan, B.H., and Stadtman, E.R., (1968). Ethanolamine deaminase (Clostridium sp.) J. Biol Chem 243:pp.183-189
Kelly, D.P., (1992) The chemolithotrophic prokaryotes, in The Prokaryotes 2nd Ed. (eds A. Balows, H.G. Trüper, M. Dworkin, W. Harder and K. Schleifer), Springer-Verlag, New York, pp. 331-343
Knapp, J.S., Jenkey, N.D., and Townsley, C.C., (1996). The anaerobic biodegradation of diethanolamine by a nitrate reducing bacterium. Biodegradation, 7: pp.183-189
Knowles, R. (1982). Denitrification. Microbiological Reviews 46:43-70
Koops, H.-P.; Bodelier, P.L.E.; Pommerening-Röser, A.; Timmermann, G., and Wagner, M. (2003). The lithotrophic ammonia oxidizing bacteria. The Prokaryotes: an evolving electronic resource for the microbiological community . Dworkin, M. et al. New York, NY, Springer Verlag.
Koops, H. and Moller, U.C. (1992). The lithotrophic ammonia-oxidizing bacteria, in The Prokaryotes, 2nd Ed. (eds A. Balows, H.G. Trüper, M. Dworkin, W. Harder and K. Schleifer), Springer-Verlag, New York, pp. 2625-2637.
Kowalchuk, G.A.; Bodelier, P.L.E.; Heilig, G.H.J.; Stephen, J.R., and Laanbroek, H.J. (1998). Community analysis of ammonia-oxidizing bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE, and oligonucleotide probe hybridization. FEMS Microbiol. Ecol. 27, pp. 339-350
Kowalchuk, G.A., and Stephen, J.R. (2001). Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Ann. Rev. Microbiol. 55, pp. 485-529
Kuenan, J.G., and Robertson, L.A. (1988). Nitrification and denitrification, in the Nitrogen and Sulphur Cycles (eds J.A. Cole and S.J. Ferguson), Cambridge University Press, Cambridge pp. 162-218
Lin, C., Stahl, D.A., (1995). Comparative analyses reveal a highly conserved endoglucanase in the cellulolytic genus Fibrobacter. J Bacteriol. 177, pp. 2543-2549
Madigan, Michael T., and Martinko, John M.,(2006). Brock Biology of Microorganisms 11th Edition. Upper Saddle River, NJ: Pearson,.
Maier, Raina M., Pepper, Ian L., Gerba, Charles P., (2000). Environmental Biotechnology. San Diego, CA: Academic Press,
Mobarry, B.K.; Wagner, M.; Urbain, V.; Rittmann, B.E., and Stahl, D.A. (1996). Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62(6), pp. 2156-2162
Narrod, S.A., and Jakoby, W.B., (1964). Metabolism of ethanolamine and ethanolamine oxidase. J. Biol. Chem. 239: pp.2189-2193
Nelson P.O., Chung A.K., and Hudson M.C. (1981) factors affecting the fate of heavy metals in the activated sludge process. Journal.of Water pollution Control Fed 53, pp. 1323-1333
Ndegwa AW, Wong R.C.K., Chu A., Bentley L.R., Lunn S.R.D. (2004). Degradation of Monoethanolamine in Soil. Journal of Environmental Engineering Science. 3: pp.137-145
Park, Hee-Dung, (2005) Effects of Dissolved Oxygen on Ammonia-Oxidizing Bacterial Communities in Activated Sludge. University of Wisconsin-Madison
Park, Hee-Dung, and Noguera D.R. (2004). Evaluating the effect of dissolved oxygen on ammonia oxidizing bacterial communities in activated sludge. Water Research 38 pp. 3275-3286
Park S.J., Yoon T.I., Bae J.H., Seo H.J., Park H.J. (2001) Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process Biochemistry 36 pp. 579-589
Prinčič, A.; Mahne, I.; Megušar, F.; Paul, E.A., and Tiedje, J.M. (1998) Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl. Evniron. Microbiol. 64(10), pp.3584-3590.
Purkhold U, Pommerening-Röser A., Juretschko S, Schmid MC, Koops H-P, Wagner M. .(2000). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl. Evniron. Microbiol 66(12):pp.5368-82
Quinlan A.V. (1984) Prediction of the optimum pH for ammonia-N oxidation by Nitrosomonas europaea in well-aerated natural and domestic-waste water. Water Resources 18, pp. 561-566
Regan, J.M., Harrington, G.W., Noguera, D.R., (2002). Ammonia- and nitrite oxidizing bacterial communities in a pilot scale chloraminated drinking water distribution system. Appl. Evniron. Microbiol. 68(1),pp. 73-81
Robertson, L.A., E.W.J. van Niel, R.A.M. Torremans, and J.G. Kuenens. (1988). Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Applied Environmental Microbiology.
Robertson, L.A., and Kuenen, J.G. (1991). Physiology of nitrifying and denitrifying bacteria, in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes (eds J.E. Rogers and W.B. Whitman), American Society for Microbiology, Washington D.C., pp. 189-199
Robison-Cox, J., Bateson, M.M., and Ward, D.M. (1995). Evaluation of nearest neighbor methods of detection of chimeric small-subunit rRNA sequences. Appl. Environ. Microbiol. 61, pp.1240-1245
Rotthauwe, J.-H.; Witzel, K.-P., and Liesack, W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine- scale analysis of natural ammonia oxidizing populations. Appl. Environ. Microbiol. 63(12), pp.4704-4712.
Reysenback, A.-L., and Vetriani, C., (1999). Homology cloning: A molecular taxonomy of the Archaea in PCR Applications, (eds. Michael A. Innis, David H. Gelfand, and John J. Sninsky) Academic press, San Diego CA, pp. 377-391
Scarlett, F.A., and Turner, J.M., (1976). Microbial metabolism of amine alcohols. Ethanolamine catabolism by coenzyme B12-dependent ethanolamine ammonia-lyase in Escherichia Coli and Klebsiella Aerogenes. J. Gen. Microbiol. 95: pp.173-176
Stein, J.L., Marsh, T.L., Wu, K.Y. Shizuya, H., and DeLong, E.F., (1996). Characterization of uncultivated prokaryotes: Isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic archaeon. J. Bacteriol. 178, pp.591-599
Stephen, J.R.; McCaig, A. E.; Smith, Z.; Prosser, J.I.; and Embley, T.M. (1996). Molecular diversity of soil and marine 16S rDNA gene sequences related to β-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62(11), pp.4147-4154.
Suylen GMH, Stefess D. (1986). Chemolithotrophic potential of Hyphomicrobium species, capable of growth on methylated sulphur compounds. Arch Microbial;146:pp.192-198
Tanaka, Kazuhiro. (1994). Anaerobic Degredation of Tetramethylammonium by a Newly Isolated marine Methanogen. Journal of Fermentation and Bioengineering. 78; No.5: pp.386-388.
Tchobanoglous, G., and Burton, F. eds (1991). Wastewater engineering: Treatment, disposal, and reuse/ Metcalf and Eddy, Inc. 3rd ed. McGraw-Hill, Inc, new York, N.Y.
Teske, A., Alm, E., Regan, J.M., Toze, S., Rittman, B.E., and Stahl, D.A., (1994). Evolutionary relationships among ammonia and nitrite-oxidising bacteria. J. bacterol., 176, pp.6623-6630
U.S. EPA. (1975). Process Design Manual for Nitrogen Control. Office of Technology Transfer, Washington D.C.
Vaccari, David A., Strom, Peter F., Alleman, James E., (2006). Environmental Biology for Engineers and Scientists, Hoboken, New Jersey, Wiley & Sons,.
Verschueren, K. (1996). Handbook of environmental data on organic chemicals. 3rd ed. Van Nostrand Reinhold- International Thomson Publishing Co., New York, N.Y.
Villaverde, S., Garcia-Encina, P.A., and Fdz-Polanco F., (1997). Influence of pH over nitrifying biofilm activity in submerged biofilters, Wat. Res. Vol. 31, No. % pp. pp.1180-1186
Wagner M, Niguora DR, Juretschko S, Rath G, Koops H-P, Schleifer K-H. (1998). Combining fluorescent in situ hybridization (FISH) with cultivation and mathematical modeling study population structure and function of ammonia-oxidizing bacteria in activated sludge. Water Science Technology;37(4-5):pp. 441-449
Wagner, M., Rath, G., Amann, R., Koops, H.P., Schleifer, K.H., (1995). In Situ identification of ammonia-oxidizing bacteria. Syst. Applications Microbiology. 18(2), pp.251-264
Watson, S.W., Bock, E., Harms, H., Koops, H., and Hooper, A.B. (1989). Nitrifying bacteria, in Bergey’s manual of Systematic Bacteriology (eds J.T. Stanley, M.P. Bryant, N. Pfennig and J.G. Holt), Williams & Wilkins, Baltimore, pp1808-1834
WEF, ASCE, and EWRI. (2006).Biological Nutrient Removal (BNR) Operation in Wastewater Treatment Manual of Practice No.30. New York, NY. McGraw-Hill
Woese, C.R., Stackebrandt, E., Weisburg, W.G., Paster, B.J., Madigan, M.T., Fowler, V.J., Hahn, C.M., Blanz, P., Gupta, R., Nealson, K.H. and Fox, J.E., (1984). The Phylogeny of purple bacteria; the alpha subdivision. Syst. Appl. Microbiol., 5, pp.327-336
Wood, P.M. (1986) Nitrification as a bacterial energy source, In Nitrification (ed. J.I. Prosser), IRL Press, Aberdeen, pp. 39-62
Yamanaka, T. and Fukumori, Y. (1988) The nitrite oxidizing system of Nitrobacter winogradskyi. FEMS Microbiol. Rev., 54, pp.259-270
Young, C.C., Burghoff, R.L., Keim, L.G., Minak-Bernero, V., Lute, J.R., and hinton, S.M. (1993). Polyvinylpyrrolidone-agarose gel electrophoresis purification of polymerase chain reaction-amplifiable DNA from soils. Appl. Environ. Microbiol. 59, 1972-1974
Zinder SH, Brock TD. (1978). Dimethyl sulphoxide reduction by microorganisms. J. Gen Microbial;105:pp.342-355
校內:2058-01-24公開