簡易檢索 / 詳目顯示

研究生: 許景翔
Hsu, Ching-Hsiang
論文名稱: 多廠能源整合的最適化
Optimal Multi-Plant Energy Integration
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 163
中文關鍵詞: 能源整合數學規劃模型合作賽局夏普利值
外文關鍵詞: energy integration, mathematical programming model, cooperative game theory, core, Shapley value
相關次數: 點閱:118下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於嚴重的氣候變遷和環境污染,如何有效得利用能源成 為熱門的研究議題。單一工廠中包含製程、熱交換器網路與公用流體工 廠,為有效利用能源,我們發展一包含所有潛在可能設計之單廠能源整 合超結構,利用逐步方式依序求解數學規劃模型,來設計出單廠能源系 統之最適化結構。此外,透過混合整數非線性規劃模型(MINLP)的建立, 決定單廠能源整合最適化結構及操作條件,以期提升能源使用效率。
    由於現實中工業園區有多個工廠並存,多廠能源整合亦為一重要議 題。透過發展多廠能源整合之模型,將考慮潛在所有能源交換之可能性, 其中包括電力、蒸汽及冷卻水,透過上述能源的整合與共享,除了有效 提升能源利用外,亦可降低多廠之總年度成本。
    此外,多廠能源整合之目標函數為最小化總年度成本,若是成本節 省額未能合理分配予參與者,會使得合作聯盟破局。因此,我們透過合 作賽局理論中核(core)與夏普利值(Shapley value),制訂合理的利益分配 方案。最後,經由案例驗證上述所提方法之可行性。

    A step-by-step method has been first developed in this work to sequentially design the optimal structure of any single-plant energy system. Since there may be multiple plants coexisting in an industrial park, total-site energy integration (TSEI) becomes an important research issue in recent years. By developing a generalized mathematical programming model for the TSEI projects, all potential energy exchange possibilities, including interplant transfers of electricity, steam and cooling water, can be considered. As a result, the total annual cost (TAC) of a TSEI scheme can be made significantly lower than that of the standalone counterpart.
    As mentioned above, the objective function used in a TSEI model is to minimize TAC. However, if the total cost saving is not properly divided and allocated to the TSEI participating members, the cooperative alliance cannot be maintained even for a short period of time. Therefore, a reasonable benefit allocation plan is stipulated according to the core and Shapley value of the cooperative game theory. Finally, the proposed methodology is illustrated in detail with two case studies.

    摘要 I Extended Abstract II 誌謝 X 目錄 XI 表目錄 XVI 圖目錄 XX 符號表 XXIV 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 公用流體系統 2 1.2.1.1 蒸汽的製造及使用 2 1.2.1.2 冷卻水的製造及使用 3 1.2.2 熱交換器網路 4 1.2.3 整廠能源整合 5 1.2.4 合作賽局 6 1.3 研究目的 7 1.4 組織章節 7 第2章 公用流體系統之設計 9 2.1 蒸汽的產生與回收 9 2.1.1 鍋爐 12 2.1.2 燃氣渦輪機 14 2.1.3 蒸汽渦輪機 16 2.1.4 除空氣器 20 2.1.5 蒸汽集管 21 2.1.6 功率平衡 22 2.1.7 物流之熱力學限制式 24 2.1.8 熱公用流體需求量之計算 26 2.2 冷卻水的產生與回收 27 2.3 目標函數 29 第3章 單廠能源整合 32 3.1 模型建立 33 3.1.1 單廠熱交換器網路模型 33 3.1.2 蒸汽系統與熱交換器網路之連結 33 3.1.3 冷卻水系統與熱交換器網路之連結 34 3.1.4 單廠能源整合之目標函數 34 3.2 例題說明 34 3.2.1 P1之能源分布網路最適化設計 37 3.2.2 P2之能源分布網路最適化設計 45 3.2.3 P3之能源分布網路最適化設計 52 3.3 結語 56 第4章 多廠能源整合 57 4.1 模型建立 57 4.1.1 多廠熱交換器網路模型 58 4.1.2 多廠蒸汽系統模型 58 4.1.3 多廠冷卻水系統模型 63 4.2 例題說明 66 4.2.1 P1與P2之能源整合 67 4.2.2 P1與P3之能源整合 75 4.2.3 P2與P3之能源整合 81 4.2.4 P1、P2與P3之能源整合 85 4.3 多廠能源整合之利益分配 93 4.4 結語 98 第5章 案例探討 99 5.1 單廠能源整合 101 5.1.1 P1之能源整合 101 5.1.2 P2之能源整合 105 5.1.3 P3之能源整合 109 5.2 多廠能源整合 113 5.2.1 P1與P2之能源整合 113 5.2.2 P1與P3之能源整合 119 5.2.3 P2與P3之能源整合 125 5.2.4 P1、P2與P3之能源整合 131 5.3 多廠能源整合之利益分配 139 5.4 結語 142 第6章 結論與展望 143 6.1 結論 143 6.2 展望 143 參考文獻 144 附錄A 熱交換器網路之設計 149 A.1 單廠熱交換網路最佳設計的數學規劃模式 149 A.2 多廠新建熱交換網路的數學規劃模式 155 附錄B 參數表 157 附錄C 合作賽局理論 160 C.1 核 160 C.2 夏普利值 162 C.2.1 邊際貢獻 162 C.2.2 夏普利值之計算 163

    Aguilar, O., Perry, S., Kim, J.-K., and Smith, R. (2007a). Design and optimization of flexible utility systems subject to variable conditions: Part 1: Modelling framework. Chemical Engineering Research and Design, 85(8), 1136-1148.
    Aguilar, O., Perry, S., Kim, J.-K., and Smith, R. (2007b). Design and optimization of flexible utility systems subject to variable conditions: Part 2: Methodology and applications. Chemical Engineering Research and Design, 85(8), 1149-1168.
    Bandyopadhyay, S., Varghese, J., and Bansal, V. (2010). Targeting for cogeneration potential through total site integration. Applied Thermal Engineering, 30(1), 6-14.
    Bruno, J. C., Fernandez, F., Castells, F., and Grossmann, I. E. (1998). A Rigorous MINLP Model for the Optimal Synthesis and Operation of Utility Plants. Chemical Engineering Research and Design, 76(3), 246-258.
    Chang, C.-T., and Hwang, J.-R. (1996). A multiobjective programming approach to waste minimization in the utility systems of chemical processes. Chemical Engineering Science, 51(16), 3951-3965.
    Chang, C., Chen, X., Wang, Y., and Feng, X. (2016). An efficient optimization algorithm for waste Heat Integration using a heat recovery loop between two plants. Applied Thermal Engineering, 105, 799-806.
    Chen, C.-L., and Lin, C.-Y. (2012). Design of Entire Energy System for Chemical Plants. Industrial & Engineering Chemistry Research, 51(30), 9980-9996.
    Chen, J. J. J. (1987). Comments on improvements on a replacement for the logarithmic mean. Chemical Engineering Science, 42, 2488-2489.
    Chou, C. C., and Shih, Y. S. (1987). A thermodynamic approach to the design and synthesis of plant utility systems. Industrial & Engineering Chemistry Research, 26(6), 1100-1108.
    Dhole, V. R., and Linnhoff, B. (1993). Total site targets for fuel, co-generation, emissions, and cooling. Computers & Chemical Engineering, 17, S101-S109.
    Floudas, C. A., Ciric, A. R., and Grossmann, I. E. (1986). Automatic synthesis of optimum heat exchanger network configurations. AIChE Journal, 32(2), 276-290.
    Hu, C. W., and Ahmad, S. (1994). Total site heat integration using the utility system. Computers & Chemical Engineering, 18(8), 729-742.
    Hui, C. W., and Ahmad, S. (1994). Minimum cost heat recovery between separate plant regions. Computers & Chemical Engineering, 18(8), 711-728.
    James, O., and Maloney, J. (2008). Perry’s chemical engineers’ handbook. In: Mc Graw-Hill, USA.
    Kim, J.-K., Savulescu, L., and Smith, R. (2001). Design of cooling systems for effluent temperature reduction. Chemical Engineering Science, 56(5), 1811-1830.
    Kim, J.-K., and Smith, R. (2001). Cooling water system design. Chemical Engineering Science, 56(12), 3641-3658.
    Kim, J.-K., and Smith, R. (2003). Automated retrofit design of cooling-water systems. AIChE Journal, 49(7), 1712-1730.
    Klemeš, J., Dhole, V. R., Raissi, K., Perry, S. J., and Puigjaner, L. (1997). Targeting and design methodology for reduction of fuel, power and CO2 on total sites. Applied Thermal Engineering, 17(8), 993-1003.
    Langè, S., Pellegrini, L. A., Moioli, S., Picutti, B., and Vergani, P. (2013). Influence of Gas Impurities on Thermodynamics of Amine Solutions. 2. Mercaptans. Industrial & Engineering Chemistry Research, 52(5), 2025-2031.
    Linnhoff, B., and Hindmarsh, E. (1983). The pinch design method for heat exchanger networks. Chemical Engineering Science, 38(5), 745-763.
    Liu, F., Ma, J., Feng, X., and Wang, Y. (2018). Simultaneous integrated design for heat exchanger network and cooling water system. Applied Thermal Engineering, 128, 1510-1519.
    Majozi, T., and Moodley, A. (2008). Simultaneous targeting and design for cooling water systems with multiple cooling water supplies. Computers & Chemical Engineering, 32(3), 540-551.
    McCain, R. A. (2014). Game theory: A nontechnical introduction to the analysis of strategy: World Scientific Publishing Company.
    Nash, J. (1951). Non-cooperative games. Annals of mathematics, 286-295.
    Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the national academy of sciences, 36(1), 48-49.
    Nishio, M., Itoh, J., Shiroko, K., and Umeda, T. (1980). A Thermodynamic Approach to Steam-Power System Design. Industrial & Engineering Chemistry Process Design and Development, 19(2), 306-312.
    Osborne, M. J. (2004). An introduction to game theory (Vol. 3): Oxford university press New York.
    Panjeshahi, M. H., Ataei, A., Gharaie, M., and Parand, R. (2009). Optimum design of cooling water systems for energy and water conservation. Chemical Engineering Research and Design, 87(2), 200-209.
    Papoulias, S. A., and Grossmann, I. E. (1983a). A structural optimization approach in process synthesis—I: Utility systems. Computers & Chemical Engineering, 7(6), 695-706.
    Papoulias, S. A., and Grossmann, I. E. (1983b). A structural optimization approach in process synthesis—III: Total processing systems. Computers & Chemical Engineering, 7(6), 723-734.
    Papoulias, S. A., and Grossmann, I. E. (1983c). A structural optimization approach in process synthesis—II: Heat recovery networks. Computers & Chemical Engineering, 7(6), 707-721.
    Rodera, H., and Bagajewicz, M. J. (2001). Multipurpose Heat-Exchanger Networks for Heat Integration Across Plants. Industrial & Engineering Chemistry Research, 40(23), 5585-5603.
    Salama, A. I. A. (2009). Optimal assignment of multiple utilities in heat exchange networks. Applied Thermal Engineering, 29(13), 2633-2642.
    Shang, Z., and Kokossis, A. (2004). A transhipment model for the optimisation of steam levels of total site utility system for multiperiod operation. Computers & Chemical Engineering, 28(9), 1673-1688.
    Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2(28), 307-317.
    Shenoy, U. V., Sinha, A., and Bandyopadhyay, S. (1998). Multiple Utilities Targeting for Heat Exchanger Networks. Chemical Engineering Research and Design, 76(3), 259-272.
    Varbanov, P., Perry, S., Klemeš, J., and Smith, R. (2005). Synthesis of industrial utility systems: cost-effective de-carbonisation. Applied Thermal Engineering, 25(7), 985-1001.
    Yaws, C. L. (1999). Chemical properties handbook: McGraw-Hill Education.
    Yee, T. F., and Grossmann, I. E. (1990). Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis. Computers & Chemical Engineering, 14(10), 1165-1184.

    下載圖示 校內:2022-07-28公開
    校外:2022-07-28公開
    QR CODE