簡易檢索 / 詳目顯示

研究生: 何光文
Ho, Kuang-Wen
論文名稱: 鋸齒狀雙層碳微管在外加場下的電子及光學性質
Electronic and optical properties of double-walled zigzag carbon nanotubes in external fields
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 62
外文關鍵詞: Carbon nanotubes, Electronic structure, Optical properties
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • none

     The electronic structure of the (9,0)-(18,0) double-walled zigzag carbon nanotubes in the presence of electric and magnetic fields are studied by the tight-binding model.
    The intertube interactions significantly affected symmetry of energy bands,energy dispersions, Fermi energy, energy gap, and wave functions.Electronic properties are strongly modulated by the parallel magnetic field (${f B_parallel}$) and the transverse electric field (${f E_ot}$).
    Both the electric and magnetic fields could destroy the double degeneracy, shift the Fermi level, and induce the semiconductor-metal transition.The electric field also produces the new edge states and change the direct gap into the indirect gap.Such effects are directly reflected in density of states and optical excitation spectra.The absorption spectra exhibit a lot of prominent peaks, mainly owing to the rich one-dimensional energy subbands.The intensity, the number, and the frequency of absorption peaks are strongly depend on the external fields.The predicted electronic and optical properties can be, respectively, verified
    by the scanning tunneling microscopy and the optical spectroscopy.

    Abstract------------------------------------------------------------------------------------------------------------- 1 A. Band structure and absorption spectrum of double-walled zigzag carbon nanotubes in a magnetic field 1. Introduction ----------------------------------------------------------------------------------------------------2 2. Theory-----------------------------------------------------------------------------------------------------------4 3. Electronic properties and optical spectra-------------------------------------------------------------------6 4. Concluding remarks-------------------------------------------------------------------------------------------9 5. Reference------------------------------------------------------------------------------------------------------11 6. Figures---------------------------------------------------------------------------------------------------------14 B. Band structure and absorption spectrum of double-walled zigzag carbon nanotubes in an electric field 1. Introduction---------------------------------------------------------------------------------------------------21 2. The tight-binding model and the optical spectral function---------------------------------------------23 3. Electronic properties and optical spectra-----------------------------------------------------------------26 4. Concluding remarks------------------------------------------------------------------------------------------31 5. Reference------------------------------------------------------------------------------------------------------33 6. Figures---------------------------------------------------------------------------------------------------------39 C. Appendix 1. Electric.f ------------------------------------------------------------------------------------------------------45 2. Magnetic.f-----------------------------------------------------------------------------------------------------54

    A:

    S. Iijima, Nature (London) 354, 56 (1991).
    Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou,
    K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard,
    and A. G. Rinzler, Science 305, 1273 (2004).
    V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias,
    and P. L. McEuen, Nature 431, 284 (2004).
    B. Bourlon, C. Miko, L. Forro, D. C. Glattli, and A. Bachtold,
    Phys. Rev. Lett. 93, 176806 (2004).
    T. Sugai, H. Yoshida, T. Shimada, T. Okazaki, and H. Shinohara,
    NanoLetters 3, 769 (2003).
    Z. Zhou, L. Ci, X. Chen, D. Tang, X. Yan, D. Liu, Y. Liang,
    H. Yuan, W. Zhou, G. Wang, and S. Xie, Carbon 41, 337 (2003).
    P. M. F. J. Costa, S. Friedrichs, J. Sloan, and M. L. H. Green,
    Carbon 42, 2527 (2004).
    J. L. Hutchison, N. A. Kiselev, E. P. Krinichnaya,
    A. V. Krestinin, R. O. Loutfy, A. P. Morawsky, V. E. Muradyan,
    E. D. Obraztsova, J. Sloan, S. V. Terekhov, and D. N. Zakharov,
    Carbon 39, 761 (2001).
    X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. O. Jones, and Y. Ando,
    Phys. Rev. Lett. 92, 125502 (2004).
    P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen,
    Nature 391, 466 (1998).
    M. J. Lopez, A. Rubio, J. A. Alonso, L. C. Qin, and S. Iijima,
    Phys. Rev. Lett. 86, 3056 (2001).
    M. P. Speed, Nature 396, 323 (1998).
    M. Abe, H. Kataura, H. Kira, T. Kodama, S. Suzuki, Y. Achiba,
    K. Kato, M. Takata, A. Fujiwara, K. Matsuda, and Y. Maniwa,
    Phys. Rev. B 68, 041405 (2003).
    C. Yam, C. Ma, X. Wang, and G. Chen, Appl. Phys. Lett. 85, 4484 (2004).
    A. I. Kolesnikov, J. Zanotti, C. Loong, and P. Thiyagarajan,
    Phys. Rev. Lett. 93, 035503 (2004).
    J. Chen, L. Yang, H. Yang, and J. Dong, Phys. Lett. A, 316, 101 (2003).
    Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, and M. F. Lin,
    Carbon 42, 3159 (2004).
    J. W. Mintwire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68,
    631 (1992).
    C. T. White, D. H. Robertson, and J. W. Mintmire, Phys. Rev. B 47,
    5485 (1993).
    J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker,
    Nature 391, 59 (1998).
    T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber,
    Nature 391, 62 (1998).
    Y. Kwon and D. Tomanek, Phys. Rev. B 58, 16001 (1998).
    S. Okada and A. Oshiyama, Phys. Rev. Lett. 91, 216801 (2003).
    R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J.
    Appl. Phys. 73, 494 (1993).
    S. Roche, F. Triozon, A. Rubio, and D. Mayou,
    Phys. Rev. B 64, 121401 (2001).
    K. Ahn, Y. Kim, J. Wiersig, and K. J. Chang,
    Phys. Rev. Lett. 90, 026601 (2003).
    M. F. Lin and K. W. K. Shung, Phys. Rev. B 50, 17744 (1994).

    B:

    Dekker C.
    Carbon nanotubes as molecular quantum wires.
    Phys Today 1999;52:22-8.
      Tans SJ, Verschueren RM, Dekker C.
    Room-temperature transistor based on a single carbon nanotube.
    Nature 1998;393(6680):49-52.
      Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ,Dekker C.
    Individual single-wall carbon nanotubes as quantum wires.
    Nature 1997;386(6624):474-7.
      Natori K, Kimura Y, Shimizu T.
    Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor.
    J Appl Phys 2005;97(3):034306(7).
      Hoenlein W, Kreupl F, Duesberg GS, Graham AP, Liebau M,
    Seidel RV, Unger E.
    Carbon nanotube applications in microelectronics.
    IEEE Transactions on Components and Packaging Technologies 2004;27(4):629-34.
      Hata. K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S.
    Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes.
    Science 2004;306(5700):1362-4.
      Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus MS.
    'Buckypaper' from coaxial nanotubes.
    Nature 2005;433(7025):476.
      Li ZM, Tang ZK, Liu HJ, Wang N, Chan CT, Saito R, Okada S, Li GD, Chen JS, Nagasawa N, Tsuda S.
    Polarized absorption spectra of single-walled ${4 AA}$ carbon nanotubes aligned in channels of an ALPO${_4}$-5 single crystal.
    Phys Rev Lett 2001;87(12):127401(4).
      Ren W, Li F, Cheng HM.
    Polarized Raman analysis of aligned double-walled carbon nanotubes.
    Phys Rev B 2005;71(11):115428(5).
      Lin MF, Shung KWK.
    Magnetoconductance of carbon nanotubes.
    Phys Rev B 1995;51(12):7592(6).
      Hamada N, Sawada S, Oshiyama A.
    New one-dimensional conductors: graphitic microtubules.
    Phys Rev Lett 1992;68(10):1579-81.
      Wildoer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C.
    Electronic structure of atomically resolved carbon nanotubes.
    Nature 1998;391(6662):59-62.
      Odom TW, Huang JL, Kim P, Lieber CM.
    Atomic structure and electronic properties of single-walled carbon nanotubes.
    Nature 1998;391(6662):62-64.
      Kim P, Odom TW, Huang JL, Lieber CM.
    Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states.
    Phys Rev Lett 1999;82(6):1225-9.
      Ouyang M, Huang JL, Cheung CL, Lieber CM.
    Energy gaps in "metallic " single-walled carbon nanotubes.
    Science 2001;292(5517):702-5.
      Kim YH, Chang KJ.
    Subband mixing rules in circumferentially perturbed carbon nanotubes: effects of transverse electric fields.
    Phys Rev B 2001;64(15):153404(4).
      Zhou X, Chen H, Zhong-can OY.
    Can electric field induced energy gaps in metallic carbon nanotubes?
    J Phys Condens Matter 2001;13(27):L635-40
      O'Keeffe J, Wei C, Cho K.
    Band structure modulation for carbon nanotubes in a uniform electric fidld.
    Appl Phys Lett 2002;80(4):676-8.
      Roche S, Dresselhaus G, Dresselhaus MS, Saito R.
    Aharonov-Bohm spectral features and coherence lengths in carbon nanotubes.
    Phys Rev B 2000;62(23):16092(8).
      Zaric S, Ostojic GN, Kono J, Shaver J, Moore VC, Strano MS, Hauge RH, Smalley RE, Wei X.
    Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes.
    Science 2004;304(5674):1129-31.
      Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP, Muradyan VE, Obraztsova ED, Sloan J, Terekhov SV, Zakharov DN.
    Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method.
    Carbon 2001;39(5):761-70.
      Li L, Li F, Liu C, Cheng HM.
    Synthesis and characterization of double-walled carbon nanotubes from multi-walled carbon nanotubes by hydrogen-arc discharge.
    Carbon 2005;43(3):623-9.
      Ren W, Li F, Chen J, Bai S, Cheng HM.
    Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane.
    Chem Phys Lett 2002;359(3-4):196-202.
      Zhu J, Yudasaka M, Iijima S.
    A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material.
    Chem Phys Lett 2003;380(5-6):496-502.
      Li F, Chou SG, Ren W, Gardecki JA, Swan AK, Unlu MS, Goldberg BB, Chen HM, Dresselhaus MS.
    Identification of the constituents of double-walled carbon nanotubes using Raman spectra taken with different laser-excitation energies.
    J Mater Res 2003;18(5):1251-8.
      Hashimoto A, Suenaga K, Urita K, Shimada T, Sugai T, Bandow S, Shinohara H, Iijima S.
    Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes.
    Phys Rev Lett 2005;94(4):045504(4).
      Zuo JM, Vartanyants I, Gao M, Zhang R, Nagahara LA.
    Atomic resolution imaging of a carbon nanotube from diffraction intensities.
    Science 2003;300(5624):1419-21.
      Charlier JC, Michenaud JP. Energetics of multilayered carbon tubules.
    Phys Rev Lett 1993;70(12):1858-61.
      Ho YH, Chang CP , Shyu FL, Chen SC, Lin MF.
    Electronic and optical properties of double-walled armchair carbon nanotubes.
    Carbon 2004;42(15):3159-67.
    Choi HC, Kim SY, Jang WS, Bae SY, Park J, Kim KL, Kim K.
    X-ray photoelectron spectroscopy studies of double-walled carbon nanotube bundles synthesized using thermal chemical vapor deposition. Chem Phys Lett 2004;399(1-3):255-9.
      Uryu S.
    Electronic states and quantum transport in double-wall carbon nanotubes.
    Phys Rev B 2004;69(7):075402(10).
      Kajiura H, Huang H, Bezryadin A.
    Quasi-ballistic electron transport in double-wall carbon nanotubes.
    Chem Phys Lett 2004;398(4-6):476-9.
      Bandow S, Chen G, Sumanasekera GU, Gupta R, Yudasaka M, Iijima S, Eklund PC.
    Diameter-selective resonant Ranam scattering in double-wall carbon nanotubes.
    Phys Rev B 2002;66(7):075416(8).
      Xia M, Zhang S, Zhang E, Zhao S, Zuo X.
    Vibrational spectra of double-wall carbon nanotubes.
    Phys Rev B 2004;69(23):233407(3).
      Rahmani A, Sauvajol JL, Cambedouzou J, Benoit C.
    Raman-active modes in finite and infinite double-walled carbon nanotubes.
    Phys Rev B 2005;71(12):125402(7).
      Bandow S, Takizawa M, Hirahara K, Yudasaka M, Iijima S.
    Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes.
    Chem Phys Lett 2001;337(1-3):48-54.
      Kalbac M, Kavan L, Juha L, Civis S, Zukalova M, Bittner M, Kubat P, Vorlicek V, Dunsch L.
    Transformation of fullerene peapods to double-walled carbon nanotubes induced by UV radiation.
    Carbon 2005;in press.
      Ugawa A, Rinzler AG, Tanner DB.
    Far-infrared gaps in single-wall carbon nanotubes.
    Phys Rev B 1999;60(16):11305(4).
      Kouklin N, Tzolov M, Straus D, Yin A, Xu JM.
    Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition.
    Appl Phys Lett 2004;85(19):4463-5.
      Kazaoui S, Minami N, Yamawaki H, Aoki K, Kataura H, Achiba Y.
    Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films.
    Phys Rev B 2000;62(3)1643-6.
      Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y.
    Optical properties of single-walled carbon nanotubes.
    Synth Met 1999;103(1-3):2555-8.
      Ahn KH, Kim YH, Wiersig J, Chang KJ.
    Spectral correlation in incommensurate multiwalled carbon nanotubes.
    Phys Rev Lett 2003;90(2):026601(4).
      Roche S, Triozon F, Rubio A, Mayou D.
    Conduction mechanisms and magnetotransport in multiwalled carbon nanotubes.
    Phys Rev B 2001;64(12):121401(4).
      Shyu FL, Chang CP, Chen RB, Chiu CW, Lin MF.
    Magnetoelectronic and optical properties of carbon nanotubes.
    Phys Rev B 2003;67(4):045405(9).

    下載圖示 校內:立即公開
    校外:2005-06-27公開
    QR CODE