| 研究生: |
吳仲寰 Wu, Chung-Huan |
|---|---|
| 論文名稱: |
胺浸漬的金屬有機骨架用於增強空氣中的二氧化碳捕捉 Amine-Impregnated Metal–Organic Frameworks for Enhancing Direct Air Capture of Carbon Dioxide |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 二氧化碳 、胺浸漬 、後合成修飾 、溶劑輔助配體置換 、四乙烯五胺 、鋯基金屬有機骨架 |
| 外文關鍵詞: | Carbon dioxide, impregnation, post-synthetic modification, solvent-assisted ligand incorporation, tetraethylenepentamine, zirconium-based MOF |
| 相關次數: | 點閱:16 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬有機骨架(Metal–organic frameworks, MOFs)是一系列由規律排列的金屬節點和有機小分子連接器透過配位鍵自組裝而成的奈米孔洞材料,具有高比表面積和規律排列且互相連通的孔洞結構,可調控的孔徑大小以及可修飾官能基的特性。這些特點使得MOF近年來被廣泛應用於氣體捕捉與分離的領域。在應對全球氣候變遷的背景下,有效從空氣中捕捉極低濃度的二氧化碳(CO2)成爲一項重要且具挑戰的研究方向。本篇研究內容為探討MOF用於直接空氣捕捉二氧化碳(Direct Air Capture, DAC)的效用。首先選用具水穩定性的鋯基金屬有機骨架(Zirconium-based MOF, Zr-MOF) MOF-808為基底,透過溶劑輔助配體結合法分別成功在六鋯金屬節點上後修飾末端羥基/水基團(-OH/-OH2)、甲酸(FA)、三氟乙酸(TFA)、五氟丙酸(PFPA)、七氟丁酸(HFBA)等配體,得到一系列具有不同親疏水特性、相同骨架結構的Zr-MOFs材料。隨後將不同比例的四乙烯五胺(TEPA)以物理浸漬法引入一系列合成的Zr-MOFs中,使胺分子固定於MOF的奈米孔洞中形成固體吸附劑。接著為了評估吸附劑材料在DAC條件下對CO2的捕捉能力,測量這些固體吸附劑於298 K、0.3 mmHg 的CO2吸附等溫線。結果顯示,當TEPA浸漬比例為0.25時,以三氟乙酸修飾之MOF-808(MOF-808-TFA)擁有最佳的CO2吸附表現,吸附量可達1.02 mmol /g,相當於每個TEPA分子能夠捕獲約0.97個CO2分子。此結果表明MOF材料中金屬節點上引入的官能基對胺固定的固體吸附劑用於DAC捕捉有關鍵性的影響。顯示透過合理設計MOF孔洞表面的化學環境有助於開發更高效且可應用於實際DAC場域的固體吸附劑。
Metal–organic frameworks (MOFs) are nanoporous materials composed of metal nodes and organic linkers connected through coordination bonds. They possess high specific surface areas, well-ordered and interconnected pore structures, as well as tunable frameworks with modifiable functional groups. These unique characteristics make MOFs widely applicable in the fields of gas capture and storage. In this study, a water-stable MOF constructed from six-connected hexa-zirconium nodes, MOF-808, is subjected to various post-synthetic modifications to synthesize a series of isostructural frameworks with terminal hydroxo/aquo ligands, formate ligands, trifluoroacetate ligands, perfluoropropionate ligands, and heptafluorobutyrate ligands coordinated on its nodes, respectively. Tetraethylenepentamine (TEPA) impregnation is thereafter performed to immobilize the amine within nanopores of these MOFs, thereby forming solid adsorbents. Carbon dioxide (CO2) adsorption isotherms of these adsorbents are measured to examine their capabilities in capturing CO2 under a simulated condition of direct air capture, i.e., 0.3 mmHg CO2 at 298 K. The ratio between the amine and MOF during the impregnation is engineered, and findings suggest that both the chemical functional group present on the MOF nodes and the amine-to-MOF ratio are effective in adjusting the resulting adsorption capacity toward CO2. TEPA impregnated within the MOF-808 coordinated with trifluoroacetate ligands exhibits the highest CO2 adsorption capacity. Under the optimal amine-to-MOF ratio 0.25, the composite adsorbent can adsorb 1.02 mmol/g CO2 in 0.3 mmHg of CO2, equal to 0.97 CO2 captured by each impregnated TEPA molecule. The findings highlight the critical role of chemical functional groups on the porous supports used for amine impregnation in designing effective adsorbents for direct air capture.
[1] A. Mardani, D. Streimikiene, F. Cavallaro, N. Loganathan and M. Khoshnoudi, Carbon dioxide (CO2) emissions and economic growth: a systematic review of two decades of research from 1995 to 2017, Science of The Total Environment, 649, 31-49, 2019.
[2] V.-H. Nguyen, B.-S. Nguyen, Z. Jin, M. Shokouhimehr, H. W. Jang, C. Hu, P. Singh, P. Raizada, W. Peng and S. S. Lam, Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels, Chemical Engineering Journal, 402, 126184, 2020.
[3] D. I. Armstrong McKay, A. Staal, J. F. Abrams, R. Winkelmann, B. Sakschewski, S. Loriani, I. Fetzer, S. E. Cornell, J. Rockström and T. M. Lenton, Exceeding 1.5 C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, 2022.
[4] A. Raihan, A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors, Journal of Environmental Science and Economics, 2, 36-58, 2023.
[5] C. Tebaldi, R. Ranasinghe, M. Vousdoukas, D. Rasmussen, B. Vega-Westhoff, E. Kirezci, R. E. Kopp, R. Sriver and L. Mentaschi, Extreme sea levels at different global warming levels, Nature Climate Change, 11, 746-751, 2021.
[6] P. Zhai, H. Pörtner, D. Roberts, J. Skea, P. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock and S. Connors, An IPCC special report on impacts of global warming, Sustainable Development, and Efforts to Eradicate Poverty, 2018.
[7] S. Chen, J. Liu, Q. Zhang, F. Teng and B. C. McLellan, A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality, Renewable & Sustainable Energy Reviews, 167, 17, 2022.
[8] M. Materazzi, S. Chari, A. Sebastiani, P. Lettieri and A. Paulillo, Waste-to-energy and waste-to-hydrogen with CCS: Methodological assessment of pathways to carbon-negative waste treatment from an LCA perspective, Waste Management, 173, 184-199, 2024.
[9] K. Bennaceur, CO2 capture and storage: a key carbon abatement option, OECD Publishing, 2008.
[10] J. C. Pires, F. G. Martins, M. C. Alvim-Ferraz and M. Simões, Recent developments on carbon capture and storage: an overview, Chemical Engineering Research and Design, 89, 1446-1460, 2011.
[11] J. Wang, D. Ryan, E. J. Anthony, N. Wildgust and T. Aiken, Effects of impurities on CO2 transport, injection and storage, Energy Procedia, 4, 3071-3078, 2011.
[12] J. Zheng, Z. R. Chong, M. F. Qureshi and P. Linga, Carbon dioxide sequestration via gas hydrates: a potential pathway toward decarbonization, Energy & Fuels, 34, 10529-10546, 2020.
[13] S. Bachu, Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change, Environmental Geology, 44, 277-289, 2003.
[14] A. Allahyarzadeh-Bidgoli and J. I. Yanagihara, Energy efficiency, sustainability, and operating cost optimization of an FPSO with CCUS: An innovation in CO2 compression and injection systems, Energy, 267, 126493, 2023.
[15] Y. Li, T. Zhang, Y. Wang and B. Wang, Transformation of waste cornstalk into versatile porous carbon adsorbent for selective CO2 capture and efficient methanol adsorption, Journal of Environmental Chemical Engineering, 9, 106149, 2021.
[16] M. Aresta, A. Dibenedetto and A. Angelini, Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2, Chemical Reviews, 114, 1709-1742, 2014.
[17] L. Jiang, A. Gonzalez-Diaz, J. Ling-Chin, A. Malik, A. Roskilly and A. Smallbone, PEF plastic synthesized from industrial carbon dioxide and biowaste, Nature Sustainability, 3, 761-767, 2020.
[18] A. Goeppert, M. Czaun, G. S. Prakash and G. A. Olah, Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere, Energy & Environmental Science, 5, 7833-7853, 2012.
[19] G. T. Rochelle, Amine scrubbing for CO2 capture, Science, 325, 1652-1654, 2009.
[20] M. Erans, E. S. Sanz-Pérez, D. P. Hanak, Z. Clulow, D. M. Reiner and G. A. Mutch, Direct air capture: process technology, techno-economic and socio-political challenges, Energy & Environmental Science, 15, 1360-1405, 2022.
[21] K. Anderson and G. Peters, The trouble with negative emissions, Science, 354, 182-183, 2016.
[22] J. C. Minx, W. F. Lamb, M. W. Callaghan, S. Fuss, J. Hilaire, F. Creutzig, T. Amann, T. Beringer, W. de Oliveira Garcia and J. Hartmann, Negative emissions—Part 1: research landscape and synthesis, Environmental Research Letters, 13, 063001, 2018.
[23] K. Lackner, H.-J. Ziock and P. Grimes, Carbon dioxide extraction from air: is it an option?, 1999.
[24] C. Beuttler, L. Charles and J. Wurzbacher, The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions, Frontiers in Climate, 1, 10, 2019.
[25] S. Fuss, W. F. Lamb, M. W. Callaghan, J. Hilaire, F. Creutzig, T. Amann, T. Beringer, W. de Oliveira Garcia, J. Hartmann and T. Khanna, Negative emissions—Part 2: costs, potentials and side effects, Environmental Research Letters, 13, 063002, 2018.
[26] G. F. Nemet, M. W. Callaghan, F. Creutzig, S. Fuss, J. Hartmann, J. Hilaire, W. F. Lamb, J. C. Minx, S. Rogers and P. Smith, Negative emissions—Part 3: innovation and upscaling, Environmental Research Letters, 13, 063003, 2018.
[27] D. J. Farrelly, C. D. Everard, C. C. Fagan and K. P. McDonnell, Carbon sequestration and the role of biological carbon mitigation: a review, Renewable and Sustainable Energy Reviews, 21, 712-727, 2013.
[28] L.-H. Fan, Y.-T. Zhang, L. Zhang and H.-L. Chen, Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris, Journal of Membrane Science, 325, 336-345, 2008.
[29] A. Ghorbani, H. R. Rahimpour, Y. Ghasemi, S. Zoughi and M. R. Rahimpour, A review of carbon capture and sequestration in Iran: microalgal biofixation potential in Iran, Renewable and Sustainable Energy Reviews, 35, 73-100, 2014.
[30] J. Blamey, E. Anthony, J. Wang and P. Fennell, The calcium looping cycle for large-scale CO2 capture, Progress in Energy and Combustion Science, 36, 260-279, 2010.
[31] M. Erans, V. Manovic and E. J. Anthony, Calcium looping sorbents for CO2 capture, Applied Energy, 180, 722-742, 2016.
[32] J. Kothandaraman, A. Goeppert, M. Czaun, G. A. Olah and G. S. Prakash, Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst, Journal of the American Chemical Society, 138, 778-781, 2016.
[33] J. M. Hanusch, I. P. Kerschgens, F. Huber, M. Neuburger and K. Gademann, Pyrrolizidines for direct air capture and CO2 conversion, Chemical Communications, 55, 949-952, 2019.
[34] F. Barzagli, C. Giorgi, F. Mani and M. Peruzzini, Screening study of different amine-based solutions as sorbents for direct CO2 capture from air, ACS Sustainable Chemistry & Engineering, 8, 14013-14021, 2020.
[35] E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas and C. W. Jones, Direct capture of CO2 from ambient air, Chemical Reviews, 116, 11840-11876, 2016.
[36] C. van der Giesen, C. J. Meinrenken, R. Kleijn, B. Sprecher, K. S. Lackner and G. J. Kramer, A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO2 versus MEA-based postcombustion capture, Environmental Science & Technology, 51, 1024-1034, 2017.
[37] M. Mostafa, C. Antonicelli, C. Varela, D. Barletta and E. Zondervan, Capturing CO2 from the atmosphere: Design and analysis of a large-scale DAC facility, Carbon Capture Science & Technology, 4, 100060, 2022.
[38] G. Holmes and D. W. Keith, An air–liquid contactor for large-scale capture of CO2 from air, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370, 4380-4403, 2012.
[39] D. W. Keith, G. Holmes, D. S. Angelo and K. Heidel, A process for capturing CO2 from the atmosphere, Joule, 2, 1573-1594, 2018.
[40] M. Pardakhti, T. Jafari, Z. Tobin, B. Dutta, E. Moharreri, N. S. Shemshaki, S. Suib and R. Srivastava, Trends in solid adsorbent materials development for CO2 capture, ACS Applied Materials & Interfaces, 11, 34533-34559, 2019.
[41] J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O'Hare and Z. Zhong, Recent advances in solid sorbents for CO2 capture and new development trends, Energy & Environmental Science, 7, 3478-3518, 2014.
[42] S. Sjostrom and H. Krutka, Evaluation of solid sorbents as a retrofit technology for CO2 capture, Fuel, 89, 1298-1306, 2010.
[43] N. McQueen, K. V. Gomes, C. McCormick, K. Blumanthal, M. Pisciotta and J. Wilcox, A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future, Progress in Energy, 3, 032001, 2021.
[44] F. S. Zeman and K. S. Lackner, Capturing carbon dioxide directly from the atmosphere, World Resource Review, 16, 157-172, 2004.
[45] A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nature Reviews Materials, 1, 1-15, 2016.
[46] O. M. Yaghi, G. Li and H. Li, Selective binding and removal of guests in a microporous metal–organic framework, Nature, 378, 703-706, 1995.
[47] O. M. Yaghi and H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, Journal of the American Chemical Society, 117, 10401-10402, 1995.
[48] S. Kitagawa, Metal–organic frameworks (MOFs), Chemical Society Reviews, 43, 5415-5418, 2014.
[49] H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341, 1230444, 2013.
[50] I. M. Hönicke, I. Senkovska, V. Bon, I. A. Baburin, N. Bönisch, S. Raschke, J. D. Evans and S. Kaskel, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials, Angewandte Chemie International Edition, 57, 13780-13783, 2018.
[51] J. D. Wuest, Atoms and the void: modular construction of ordered porous solids, Nature Communications, 11, 4652, 2020.
[52] M. Sabo, A. Henschel, H. Fröde, E. Klemm and S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, Journal of Materials Chemistry, 17, 3827-3832, 2007.
[53] Y.-C. Chen, W.-H. Chiang, D. Kurniawan, P.-C. Yeh, K.-i. Otake and C.-W. Kung, Impregnation of graphene quantum dots into a metal–organic framework to render increased electrical conductivity and activity for electrochemical sensing, ACS Applied Materials & Interfaces, 11, 35319-35326, 2019.
[54] L. J. Murray, M. Dincă and J. R. Long, Hydrogen storage in metal–organic frameworks, Chemical Society Reviews, 38, 1294-1314, 2009.
[55] S. Qiu, M. Xue and G. Zhu, Metal–organic framework membranes: from synthesis to separation application, Chemical Society Reviews, 43, 6116-6140, 2014.
[56] W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and S. K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications, Chemical Society Reviews, 46, 3242-3285, 2017.
[57] C.-H. Wu, K.-C. Wu, C.-H. Shen and C.-W. Kung, Zirconium-based metal–organic frameworks for electrochemical energy storage, Coordination Chemistry Reviews, 538, 216704, 2025.
[58] Q. Wang and D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis, Chemical Reviews, 120, 1438-1511, 2019.
[59] M. X. Wu and Y. W. Yang, Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy, Advanced Materials, 29, 1606134, 2017.
[60] N. C. Burtch, H. Jasuja and K. S. Walton, Water stability and adsorption in metal–organic frameworks, Chemical Reviews, 114, 10575-10612, 2014.
[61] X. C. Huang, Y. Y. Lin, J. P. Zhang and X. M. Chen, Ligand‐directed strategy for zeolite‐type metal–organic frameworks: zinc (II) imidazolates with unusual zeolitic topologies, Angewandte Chemie International Edition, 45, 1557-1559, 2006.
[62] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe and O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science, 319, 939-943, 2008.
[63] S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang and P. Zhang, Stable metal–organic frameworks: design, synthesis, and applications, Advanced Materials, 30, 1704303, 2018.
[64] S. Yuan, J.-S. Qin, C. T. Lollar and H.-C. Zhou, Stable metal–organic frameworks with group 4 metals: current status and trends, ACS Central Science, 4, 440-450, 2018.
[65] C. Xiao, J. Tian, Q. Chen and M. Hong, Water-stable metal–organic frameworks (MOFs): rational construction and carbon dioxide capture, Chemical Science, 15, 1570-1610, 2024.
[66] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, Journal of the American Chemical Society, 130, 13850-13851, 2008.
[67] D. W. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. W. Wei and H. C. Zhou, Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts, Angewandte Chemie-International Edition, 51, 10307-10310, 2012.
[68] R. Wang, Z. Wang, Y. Xu, F. Dai, L. Zhang and D. Sun, Porous zirconium metal–organic framework constructed from 2D→ 3D interpenetration based on a 3, 6-connected kgd net, Inorganic Chemistry, 53, 7086-7088, 2014.
[69] V. Bon, I. Senkovska, I. A. Baburin and S. Kaskel, Zr-and Hf-based metal–organic frameworks: tracking down the polymorphism, Crystal Growth & Design, 13, 1231-1237, 2013.
[70] H. Furukawa, F. Gandara, Y. B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson and O. M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials, Journal of the American Chemical Society, 136, 4369-4381, 2014.
[71] P. Li, R. C. Klet, S.-Y. Moon, T. C. Wang, P. Deria, A. W. Peters, B. M. Klahr, H.-J. Park, S. S. Al-Juaid and J. T. Hupp, Synthesis of nanocrystals of Zr-based metal–organic frameworks with csq-net: significant enhancement in the degradation of a nerve agent simulant, Chemical Communications, 51, 10925-10928, 2015.
[72] S. Waitschat, H. Reinsch and N. Stock, Water-based synthesis and characterisation of a new Zr-MOF with a unique inorganic building unit, Chemical Communications, 52, 12698-12701, 2016.
[73] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke and P. Behrens, Modulated synthesis of Zr‐based metal–organic frameworks: from nano to single crystals, Chemistry–A European Journal, 17, 6643-6651, 2011.
[74] S. Krause, V. Bon, U. Stoeck, I. Senkovska, D. M. Többens, D. Wallacher and S. Kaskel, A stimuli‐responsive zirconium metal–organic framework based on supermolecular design, Angewandte Chemie, 129, 10816-10820, 2017.
[75] A. C. Dreischarf, M. Lammert, N. Stock and H. Reinsch, Green synthesis of Zr-CAU-28: structure and properties of the first Zr-MOF based on 2, 5-furandicarboxylic acid, Inorganic Chemistry, 56, 2270-2277, 2017.
[76] J. G. Nguyen and S. M. Cohen, Moisture-resistant and superhydrophobic metal−organic frameworks obtained via postsynthetic modification, Journal of the American Chemical Society, 132, 4560-4561, 2010.
[77] P. Deria, Y. G. Chung, R. Q. Snurr, J. T. Hupp and O. K. Farha, Water stabilization of Zr6-based metal–organic frameworks via solvent-assisted ligand incorporation, Chemical Science, 6, 5172-5176, 2015.
[78] J. Liu, R. Anderson, K. M. Schmalbach, T. R. Sheridan, Z. Wang, N. M. Schweitzer, A. Stein, N. A. Mara, D. Gomez-Gualdron and J. T. Hupp, Insights into dual-functional modification for water stability enhancement of mesoporous zirconium metal–organic frameworks, Journal of Materials Chemistry A, 10, 17307-17316, 2022.
[79] P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp and O. K. Farha, Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies, Journal of the American Chemical Society, 135, 16801-16804, 2013.
[80] P. Deria, W. Bury, J. T. Hupp and O. K. Farha, Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation, Chemical Communications, 50, 1965-1968, 2014.
[81] P. Deria, W. Bury, I. Hod, C.-W. Kung, O. Karagiaridi, J. T. Hupp and O. K. Farha, MOF functionalization via solvent-assisted ligand incorporation: phosphonates vs carboxylates, Inorganic Chemistry, 54, 2185-2192, 2015.
[82] J.-B. Lin, T. T. Nguyen, R. Vaidhyanathan, J. Burner, J. M. Taylor, H. Durekova, F. Akhtar, R. K. Mah, O. Ghaffari-Nik and S. Marx, A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture, Science, 374, 1464-1469, 2021.
[83] F. Su and C. Lu, CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption, Energy & Environmental Science, 5, 9021-9027, 2012.
[84] M. Song, G. Rim, F. Kong, P. Priyadarshini, C. Rosu, R. P. Lively and C. W. Jones, Cold-temperature capture of carbon dioxide with water coproduction from air using commercial zeolites, Industrial & Engineering Chemistry Research, 61, 13624-13634, 2022.
[85] H. An, W. Tian, X. Lu, H. Yuan, L. Yang, H. Zhang, H. Shen and H. Bai, Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74, Chemical Engineering Journal, 469, 2023.
[86] A. Kumar, D. G. Madden, M. Lusi, K. J. Chen, E. A. Daniels, T. Curtin, J. J. Perry IV and M. J. Zaworotko, Direct air capture of CO2 by physisorbent materials, Angewandte Chemie International Edition, 54, 14372-14377, 2015.
[87] T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong and J. R. Long, Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc), Journal of the American Chemical Society, 134, 7056-7065, 2012.
[88] M. Gorbounov, P. Halloran and S. M. Soltani, Hydrophobic and hydrophilic functional groups and their impact on physical adsorption of CO2 in presence of H2O: a critical review, Journal of CO2 Utilization, 86, 102908, 2024.
[89] V. H. Dalvi, V. Srinivasan and P. J. Rossky, Understanding the effectiveness of fluorocarbon ligands in dispersing nanoparticles in supercritical carbon dioxide, The Journal of Physical Chemistry C, 114, 15553-15561, 2010.
[90] D.-X. Xue, A. J. Cairns, Y. Belmabkhout, L. Wojtas, Y. Liu, M. H. Alkordi and M. Eddaoudi, Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake, Journal of the American Chemical Society, 135, 7660-7667, 2013.
[91] C. Yang, U. Kaipa, Q. Z. Mather, X. Wang, V. Nesterov, A. F. Venero and M. A. Omary, Fluorous metal–organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage, Journal of the American Chemical Society, 133, 18094-18097, 2011.
[92] P. Mores, N. Scenna and S. Mussati, CO2 capture using monoethanolamine (MEA) aqueous solution: modeling and optimization of the solvent regeneration and CO2 desorption process, Energy, 45, 1042-1058, 2012.
[93] B. Aghel, S. Janati, S. Wongwises and M. S. Shadloo, Review on CO2 capture by blended amine solutions, International Journal of Greenhouse Gas Control, 119, 103715, 2022.
[94] M. W. Hahn, M. Steib, A. Jentys and J. A. Lercher, Mechanism and kinetics of CO2 adsorption on surface bonded amines, The Journal of Physical Chemistry C, 119, 4126-4135, 2015.
[95] P. Bollini, S. A. Didas and C. W. Jones, Amine-oxide hybrid materials for acid gas separations, Journal of Materials Chemistry, 21, 15100-15120, 2011.
[96] Y. G. Ko, S. S. Shin and U. S. Choi, Primary, secondary, and tertiary amines for CO2 capture: designing for mesoporous CO2 adsorbents, Journal of Colloid and Interface Science, 361, 594-602, 2011.
[97] T. S. Nguyen, N. A. Dogan, H. Lim and C. T. Yavuz, Amine chemistry of porous CO2 adsorbents, Accounts of Chemical Research, 56, 2642-2652, 2023.
[98] M. Gray, J. Hoffman, D. Hreha, D. Fauth, S. Hedges, K. Champagne and H. Pennline, Parametric study of solid amine sorbents for the capture of carbon dioxide, Energy & Fuels, 23, 4840-4844, 2009.
[99] M. Bhagiyalakshmi, L. J. Yun, R. Anuradha and H. T. Jang, Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting, Journal of Hazardous Materials, 175, 928-938, 2010.
[100] X. Feng, G. Hu, X. Hu, G. Xie, Y. Xie, J. Lu and M. Luo, Tetraethylenepentamine-modified siliceous mesocellular foam (MCF) for CO2 capture, Industrial & Engineering Chemistry Research, 52, 4221-4228, 2013.
[101] H. Su, H. Zhang, G. Qi, W. Lu and M. Wang, Preparation and CO2 adsorption properties of TEPA-functionalized multi-level porous particles based on solid waste, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 653, 130004, 2022.
[102] Y. Jin, H. Lin, Y. Liu, H. An and J. S. Lee, Optimizing amine-based adsorbents for direct air capture: a comprehensive review of performance under diverse climatic conditions, Renewable and Sustainable Energy Reviews, 217, 115782, 2025.
[103] H.-L. Peng, J.-B. Zhang, J.-Y. Zhang, F.-Y. Zhong, P.-K. Wu, K. Huang, J.-P. Fan and F. Liu, Chitosan-derived mesoporous carbon with ultrahigh pore volume for amine impregnation and highly efficient CO2 capture, Chemical Engineering Journal, 359, 1159-1165, 2019.
[104] X. Xu, C. Song, B. G. Miller and A. W. Scaroni, Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41, Industrial & Engineering Chemistry Research, 44, 8113-8119, 2005.
[105] P. Kumar and V. V. Guliants, Periodic mesoporous organic–inorganic hybrid materials: Applications in membrane separations and adsorption, Microporous and Mesoporous Materials, 132, 1-14, 2010.
[106] A. Danon, P. C. Stair and E. Weitz, FTIR study of CO2 adsorption on amine-grafted SBA-15: elucidation of adsorbed species, The Journal of Physical Chemistry C, 115, 11540-11549, 2011.
[107] E. J. Acosta, C. S. Carr, E. E. Simanek and D. F. Shantz, Engineering nanospaces: Iterative synthesis of melamine‐based dendrimers on amine‐functionalized SBA‐15 leading to complex hybrids with controllable chemistry and porosity, Advanced Materials, 16, 985-989, 2004.
[108] J. M. Rosenholm and M. Lindén, Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas, Chemistry of Materials, 19, 5023-5034, 2007.
[109] J. M. Rosenholm, A. Penninkangas and M. Lindén, Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine, Chemical Communications, 3909-3911, 2006.
[110] S. Builes and L. F. Vega, Effect of immobilized amines on the sorption properties of solid materials: impregnation versus grafting, Langmuir, 29, 199-206, 2013.
[111] H. Dong, L.-H. Li, Z. Feng, Q.-N. Wang, P. Luan, J. Li and C. Li, Amine-functionalized quasi-MOF for direct air capture of CO2, ACS Materials Letters, 5, 2656-2664, 2023.
[112] M. Bagheri and M. Y. Masoomi, Quasi-metal organic frameworks: Preparation, applications and future perspectives, Coordination Chemistry Reviews, 468, 214643, 2022.
[113] T. Wang, F. Liu, W. Tang, S. Xu, H. Dong, Z. Chen and X. Gao, Ultra-highly efficient adsorbent for CO2 capture from air by directional deprotonation regulation of MOFs-based amine grafting, Chemical Engineering Journal, 490, 2024.
[114] F. Liu, T. Wang, H. Dong and W. Liu, Modified metal–organic framework by a novel coordinatively unsaturated amine grafting mechanism for direct air capture of CO2, Chemical Engineering Journal, 454, 140431, 2023.
[115] T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocella, F. Giordanino, S. O. Odoh and W. S. Drisdell, Cooperative insertion of CO2 in diamine-appended metal-organic frameworks, Nature, 519, 303-308, 2015.
[116] A. C. Forse, P. J. Milner, J.-H. Lee, H. N. Redfearn, J. Oktawiec, R. L. Siegelman, J. D. Martell, B. Dinakar, L. B. Zasada and M. I. Gonzalez, Elucidating CO2 chemisorption in diamine-appended metal–organic frameworks, Journal of the American Chemical Society, 140, 18016-18031, 2018.
[117] O. I.-F. Chen, C.-H. Liu, K. Wang, E. Borrego-Marin, H. Li, A. H. Alawadhi, J. A. Navarro and O. M. Yaghi, Water-enhanced direct air capture of carbon dioxide in metal–organic frameworks, Journal of the American Chemical Society, 146, 2835-2844, 2024.
[118] J. M. Park, D. K. Yoo and S. H. Jhung, Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: contribution of functional groups to adsorption, Chemical Engineering Journal, 402, 126254, 2020.
[119] H. J. Jun, D. K. Yoo and S. H. Jhung, Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure, Journal of CO2 Utilization, 58, 2022.
[120] Z. Lu, J. Liu, X. Zhang, Y. Liao, R. Wang, K. Zhang, J. Lyu, O. K. Farha and J. T. Hupp, Node-accessible zirconium MOFs, Journal of the American Chemical Society, 142, 21110-21121, 2020.
[121] C.-H. Shen, Y.-N. Chang, Y.-L. Chen and C.-W. Kung, Sulfonate-grafted metal–organic framework─ a porous alternative to Nafion for electrochemical sensors, ACS Materials Letters, 5, 1938-1943, 2023.
[122] L. A. Darunte, A. D. Oetomo, K. S. Walton, D. S. Sholl and C. W. Jones, Direct air capture of CO2 using amine functionalized MIL-101(Cr), ACS Sustainable Chemistry & Engineering, 4, 5761-5768, 2016.
[123] G. Rim, F. Kong, M. Song, C. Rosu, P. Priyadarshini, R. P. Lively and C. W. Jones, Sub-ambient temperature direct air capture of CO2 using amine-impregnated MIL-101(Cr) enables ambient temperature CO2 recovery, JACS Au, 2, 380-393, 2022.
[124] L. E. Valenti, M. B. Paci, C. P. De Pauli and C. E. Giacomelli, Infrared study of trifluoroacetic acid unpurified synthetic peptides in aqueous solution: trifluoroacetic acid removal and band assignment, Analytical Biochemistry, 410, 118-123, 2011.
[125] K. L. Bierbrauer, R. V. Alasino, A. Muñoz, D. M. Beltramo and M. C. Strumia, Characterization and bacterial adhesion of chitosan-perfluorinated acid films, Colloids Surf B Biointerfaces, 114, 201-208, 2014.
[126] Y. Xie, Y. Huang, Y. Zhang, T. Wu, S. Liu, M. Sun, B. Lee, Z. Lin, H. Chen and P. Dai, Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes, Nature Communications, 14, 2883, 2023.
[127] R. Thür, D. Van Havere, N. Van Velthoven, S. Smolders, A. Lamaire, J. Wieme, V. Van Speybroeck, D. De Vos and I. F. J. Vankelecom, Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO2 permeation for a more rational MMM development, Journal of Materials Chemistry A, 9, 12782-12796, 2021.
[128] T. M. Rayder, F. Formalik, S. M. Vornholt, H. Frank, S. Lee, M. Alzayer, Z. Chen, D. Sengupta, T. Islamoglu and F. Paesani, Unveiling unexpected modulator-CO2 dynamics within a zirconium metal-organic framework, Journal of the American Chemical Society, 145, 11195-11205, 2023.
[129] J. Zhao, S. Deng, L. Zhao, X. Yuan, Z. Du, S. Li, L. Chen and K. Wu, Understanding the effect of H2O on CO2 adsorption capture: mechanism explanation, quantitative approach and application, Sustainable Energy & Fuels, 4, 5970-5986, 2020.
[130] T. Ghanbari, F. Abnisa and W. M. A. W. Daud, A review on production of metal organic frameworks (MOF) for CO2 adsorption, Science of The Total Environment, 707, 135090, 2020.