| 研究生: |
黃良安 Huang, Liang-An |
|---|---|
| 論文名稱: |
以NaOH及HF溶蝕α-Al2O3粉末之研究 A Study on the Etching of α-Al2O3 Powder by NaOH and HF |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 流變 、溶蝕 |
| 外文關鍵詞: | NaOH, Al2O3, HF, etching |
| 相關次數: | 點閱:108 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
α-Al2O3為一非常穩定之材料,具有絕熱性、電絕緣性、耐磨性、耐腐蝕性、高機械強度及高溫化學穩定性等優點。但工業上很難獲得粒徑<0.2μm的α-Al2O3微粉,而若有平均晶徑細於此一晶徑的粉末,則常混有δ及θ-Al2O3的晶粒。另有研究指出奈米級的α-Al2O3在濕球磨的過程中,會隨球磨時間增加而在表層形成Al(OH)3(Bayerite)相。
而奈米級之α-Al2O3粉,由於其化學能高、反應活性強,有可能利用OH﹣及F﹣離子與Al3+形成穩定之錯離子之機制對其產生溶蝕。於是本研究即利用NaOH及HF來對α-Al2O3進行溶蝕反應,藉此溶蝕反應來達到修飾粉末形狀及表面之效果,進而能改善α-Al2O3漿料之流變行為。另外,也可藉此溶蝕反應去除α-Al2O3粉末中之雜相,並了解影響溶蝕反應之重要因素。
研究中發現影響α-Al2O3溶蝕量最重要之因素為反應溫度及固液比:溶蝕量隨著溫度升高及固液比增加而顯著增加。並從固液比實驗、SEM圖像及XRD分析,發現奈米級α-Al2O3粉末確實含有一些較易溶之含鋁相,而平均粒徑越小之粉末所含之易溶相也越多。
由α-Al2O3溶蝕實驗估算得到NaOH及HF溶蝕α-Al2O3之反應活化能分別為31.751(kJmol-1)及49.493(kJmol-1)。而由NaOH及HF溶蝕α-Al2O3反應化學式之驗証實驗得知,NaOH與α-Al2O3反應產生之錯離子應為Al(OH)4﹣,而HF與α-Al2O3反應產生之錯離子則不全然為AlF63﹣。利用3M NaOH在80℃下溶蝕不同粒徑α-Al2O3之實驗結果可估算α-Al2O3表面能量(γ)約為2.0241(J/m2)。
觀察SEM圖像發現使用NaOH及HF確實可有效地將奈米級α-Al2O3粉末中之易溶相及小顆粒優先去除,使α-Al2O3表面變得較為平滑,因此在高固含量之α-Al2O3漿料中會導致顆粒間之磨擦力改變,進而導致漿料之流變性改變。
α-Al2O3 is a very stable material with advantages such as heat insulation, electric insulation, wearability, corrosivity-bearing property, high mechanical strength and high temperature-chemical stability etc.. However it is hard to get submicro-size α-Al2O3 powder in industry. It commonly mixed with δ and θ-Al2O3 crystalline grains for nano-size α-Al2O3 powder. In addition, research report indicated that nano-scale α-Al2O3 obtained form wet ball-milling may be coated by Al(OH)3(Bayerite) on the surface as the ball-milling time increase.
Nano-scale α-Al2O3 powder, as a result of its high chemical potential and reaction activity, was possible to etch by OH¯ or F¯ ions which form stable complex with Al3+. Therefore the purpose of this study is to etch α-Al2O3 by NaOH and HF, and modify the shape and appearance of the powder, and finally improve rheology of α-Al2O3 slurry. In addition, this study discusses the possibility of removing the impure phases in α-Al2O3 powder and the important factors of etching reaction.
In this study we discovered that the important factors affecting α-Al2O3 etching efficiency were reaction temperature and solid to liquid ratio. The higher temperature and solid to liquid ratio usually produced more etching quantity(amount of corrosion) of α-Al2O3. From the experiment at results of solid to liquid ratio tests, SEM pictures and XRD analysis, we discovered that there were some easy-dissolved Al2O3 phases in the nano-scale α-Al2O3 powder. The content of easy-dissolved phases usually increase with decreasing particle size of α-Al2O3.
From α-Al2O3 etching kinetic experiments we estimated the reacting activation energy for NaOH and HF was 31.751 and 49.493 (kJmol-1) respectively. By measuring the concentrations change in etching eaction, we knew the major complex formed in NaOH etching α-Al2O3 should be Al(OH)4-, but the complex formed in HF etching α-Al2O3 reaction was not totally AlF63-. By using the experiment results of NaOH etching α-Al2O3 of different particle size, we estimated the surface energy (γ) of α-Al2O3 was about 1.97516 (J/m2).
From SEM pictures we knew that using NaOH and HF etching technique the easy-dissolved phases and small particles existed in α-Al2O3 powder may be removed efficiently. This made α-Al2O3 surface become smoother and modify the rheology of α-Al2O3 slurry in high solid content we expected that the viscosity of α-Al2O3 slurry may be decreased due to less friction between particles.
1.李玄閔,“不同粒徑分佈與凝聚狀態之α氧化鋁粉末的成型與燒結行為”
,國立成功大學資源工程研究所,碩士論文,中華民國九十三年六月。
2.陳秀雯,“利用Boehmite分散及包覆θ- Al2O3粉生產30-50 nm α- Al2O3 ”
,國立成功大學資源工程研究所,碩士論文,中華民國九十三年六月。
3.林斐雯,“球化微粒α-Al2O3之研究”,國立成功大學資源工程研究所,
碩士論文,中華民國九十三年七月。
4.Stenger, F., Martin Gotzinger, Peter Jakob and Wolfgang Peukert, “Mechano-Chemical Changes of Nano Size α-Al2O3 During Wet Dispersion
in Stirred Ball Mills,” Part. Part. Syst. Charact. 21(2004) 31-38.
5.汪建民,陶瓷技術手冊,中華民國粉末冶金協會出版,民國八十三年七月。
6.王明光譯,鋁的環境化學,國立編譯館出版,1999。
7.楊偉文,“水溶性黏結劑系統射出成型氧化鋁之流變與脫脂行為”,
國立成功大學材料科學及工程學系,博士論文,民國九十一年六月。
8.Liu, Yangqiao and Lian Gao, “Dispersion of aqueous alumina
suspensions using copolymers with synergistic functional groups”
, Materials Chemistry and Physics, vol. 82(2003) 362-369.
9.Hind, Andrew R., Suresh K. Bhargava and Stephen C. Grocott,
“The surface Chemistry of Bayer process solids: a review”,
Colloids and Surfaces A: Physicochemical and Engineering
Aspects 146(1999) 359-374.
10.Panias, D., P. Asimidis and I. Paspaliaris, “Solubility of
boehmite in concentrated sodium hydroxide solutions: model
development and assessment”, Hydrometallurgy, vol. 59 (2001) 15-29.
11.ÖZDEMÍR, MÍNE and ÍLKER KIPÇAK, “Dissolution Kinetics of
Sepiolite in Hydrochloric Acid and Nitric Acid”, Clays and
Clay Minerals, Vol. 52, No. 6, 714-721, 2004.
12.Box, George E. P., William G. Hunter and J. Stuart Hunter,
“Statistics for Experimenters”, John Wiley & Sons, Inc., pp. 306-344.
13.Stumm, W. and J.J. Morgan, “Aquatic Chemistry”, John Wiley
& Sons, 1981.
14.McHale, J. M., A. Aurous, A. J. Perrotta and A. Navrotsky,
“Surface Energies and Thermodynamic Phase Stability in
Nanocrystalline Aluminas”, Science, New Series, Vol.277,
No. 5327 (Aug. 8, 1997), 788-791.