簡易檢索 / 詳目顯示

研究生: 黃良安
Huang, Liang-An
論文名稱: 以NaOH及HF溶蝕α-Al2O3粉末之研究
A Study on the Etching of α-Al2O3 Powder by NaOH and HF
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 68
中文關鍵詞: 流變溶蝕
外文關鍵詞: NaOH, Al2O3, HF, etching
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   α-Al2O3為一非常穩定之材料,具有絕熱性、電絕緣性、耐磨性、耐腐蝕性、高機械強度及高溫化學穩定性等優點。但工業上很難獲得粒徑<0.2μm的α-Al2O3微粉,而若有平均晶徑細於此一晶徑的粉末,則常混有δ及θ-Al2O3的晶粒。另有研究指出奈米級的α-Al2O3在濕球磨的過程中,會隨球磨時間增加而在表層形成Al(OH)3(Bayerite)相。
      
      而奈米級之α-Al2O3粉,由於其化學能高、反應活性強,有可能利用OH﹣及F﹣離子與Al3+形成穩定之錯離子之機制對其產生溶蝕。於是本研究即利用NaOH及HF來對α-Al2O3進行溶蝕反應,藉此溶蝕反應來達到修飾粉末形狀及表面之效果,進而能改善α-Al2O3漿料之流變行為。另外,也可藉此溶蝕反應去除α-Al2O3粉末中之雜相,並了解影響溶蝕反應之重要因素。
      
      研究中發現影響α-Al2O3溶蝕量最重要之因素為反應溫度及固液比:溶蝕量隨著溫度升高及固液比增加而顯著增加。並從固液比實驗、SEM圖像及XRD分析,發現奈米級α-Al2O3粉末確實含有一些較易溶之含鋁相,而平均粒徑越小之粉末所含之易溶相也越多。
      
      由α-Al2O3溶蝕實驗估算得到NaOH及HF溶蝕α-Al2O3之反應活化能分別為31.751(kJmol-1)及49.493(kJmol-1)。而由NaOH及HF溶蝕α-Al2O3反應化學式之驗証實驗得知,NaOH與α-Al2O3反應產生之錯離子應為Al(OH)4﹣,而HF與α-Al2O3反應產生之錯離子則不全然為AlF63﹣。利用3M NaOH在80℃下溶蝕不同粒徑α-Al2O3之實驗結果可估算α-Al2O3表面能量(γ)約為2.0241(J/m2)。
      
      觀察SEM圖像發現使用NaOH及HF確實可有效地將奈米級α-Al2O3粉末中之易溶相及小顆粒優先去除,使α-Al2O3表面變得較為平滑,因此在高固含量之α-Al2O3漿料中會導致顆粒間之磨擦力改變,進而導致漿料之流變性改變。

     α-Al2O3 is a very stable material with advantages such as heat insulation, electric insulation, wearability, corrosivity-bearing property, high mechanical strength and high temperature-chemical stability etc.. However it is hard to get submicro-size α-Al2O3 powder in industry. It commonly mixed with δ and θ-Al2O3 crystalline grains for nano-size α-Al2O3 powder. In addition, research report indicated that nano-scale α-Al2O3 obtained form wet ball-milling may be coated by Al(OH)3(Bayerite) on the surface as the ball-milling time increase.
      
     Nano-scale α-Al2O3 powder, as a result of its high chemical potential and reaction activity, was possible to etch by OH¯ or F¯ ions which form stable complex with Al3+. Therefore the purpose of this study is to etch α-Al2O3 by NaOH and HF, and modify the shape and appearance of the powder, and finally improve rheology of α-Al2O3 slurry.  In addition, this study discusses the possibility of removing the impure phases in α-Al2O3 powder and the important factors of etching reaction.
      
     In this study we discovered that the important factors affecting α-Al2O3 etching efficiency were reaction temperature and solid  to liquid ratio. The higher temperature and solid to liquid ratio usually produced more etching quantity(amount of corrosion) of α-Al2O3. From the experiment at results of solid to liquid ratio tests, SEM pictures and XRD analysis, we discovered that there were some easy-dissolved Al2O3 phases in the nano-scale α-Al2O3 powder. The content of easy-dissolved phases usually increase with decreasing particle size of α-Al2O3.
        
     From α-Al2O3 etching kinetic experiments we estimated the reacting activation energy for NaOH and HF was 31.751  and 49.493 (kJmol-1) respectively. By measuring the concentrations change in etching  eaction, we knew the major complex formed in NaOH etching α-Al2O3 should be Al(OH)4-, but the complex formed in HF etching α-Al2O3 reaction was not totally AlF63-. By using the experiment results of NaOH etching α-Al2O3 of different particle size, we estimated the surface energy (γ) of α-Al2O3 was about 1.97516 (J/m2).
        
     From SEM pictures we knew that using NaOH and HF etching technique the easy-dissolved phases and small particles existed in α-Al2O3 powder may be removed efficiently. This made α-Al2O3 surface become smoother and modify the rheology of α-Al2O3 slurry in high solid content we expected that the viscosity of α-Al2O3 slurry may be decreased due to less friction  between particles.

    摘要....................................................I Abstract................................................II 誌謝....................................................IV 表目錄................................................VIII 圖目錄..................................................IX 第一章 緒論............................................1 1.1 前言...............................................1 1.2 研究目的...........................................3 第二章 理論基礎與前人研究..............................4 2.1 Al2O3之結構........................................4 2.2 溶液鋁定量方法.....................................6 2.3 粉末形狀與流體行為.................................8 2.4 前人研究...........................................10 第三章 實驗及研究方法..................................11 3.1 實驗流程...........................................11 3.2 實驗材料...........................................11  3.2.1 α-Al2O3粉末...................................11  3.2.2 化學試劑.......................................14 3.3 實驗設備...........................................15 3.4 實驗方法及步驟.....................................18  3.4.1 降溫實驗.......................................18  3.4.2 實驗因素設計...................................18  3.4.3 動力實驗.......................................19  3.4.4 NaOH及HF濃度實驗...............................19  3.4.5 固液比實驗.....................................21  3.4.6 反應溫度實驗...................................21  3.4.7 活化能實驗.....................................22  3.4.8 化學反應式實驗.................................22  3.4.9 α-Al2O3漿料之流變行為.........................23 3.5 分析方法...........................................24 第四章 結果與討論......................................26 4.1 α-Al2O3溶蝕反應之特性:動力及降溫實驗.............26 4.2 影響α-Al2O3溶蝕反應之重要條件分析.................28 4.3 固液比對α-Al2O3溶蝕反應之影響.....................30 4.4 溫度對α-Al2O3溶蝕反應之影響.......................39 4.5 溶蝕前後α-Al2O3粉末之XRD分析......................41 4.6 由α-Al2O3溶蝕實驗估算之相關動力及熱力學數據.......44  4.6.1 α-Al2O3溶蝕反應活化能之估算...................44  4.6.2 以NaOH及HF溶蝕α-Al2O3反應化學式之驗証.........47  4.6.3 α-Al2O3表面能量之估算.........................49 4.7 以NaOH及HF溶蝕α-Al2O3反應之應用...................51 第五章 結論............................................54 參考文獻................................................56 附錄A 實驗使用之化學試劑性質及使用注意事項.............58 附錄B 降溫及動力實驗數據...............................62 附錄C 固液比實驗數據...................................63 附錄D NaOH及HF濃度與α-Al2O3之溶解百分比關係...........64 附錄E 溫度與α-Al2O3之溶解百分比關係...................65 附錄F α-Al2O3溶蝕反應活化能之相關數據.................66 附錄G α-Al2O3漿料之流變數據...........................68

    1.李玄閔,“不同粒徑分佈與凝聚狀態之α氧化鋁粉末的成型與燒結行為”
    ,國立成功大學資源工程研究所,碩士論文,中華民國九十三年六月。

    2.陳秀雯,“利用Boehmite分散及包覆θ- Al2O3粉生產30-50 nm α- Al2O3 ”
    ,國立成功大學資源工程研究所,碩士論文,中華民國九十三年六月。

    3.林斐雯,“球化微粒α-Al2O3之研究”,國立成功大學資源工程研究所,
    碩士論文,中華民國九十三年七月。

    4.Stenger, F., Martin Gotzinger, Peter Jakob and Wolfgang Peukert, “Mechano-Chemical Changes of Nano Size α-Al2O3 During Wet Dispersion
    in Stirred Ball Mills,” Part. Part. Syst. Charact. 21(2004) 31-38.

    5.汪建民,陶瓷技術手冊,中華民國粉末冶金協會出版,民國八十三年七月。

    6.王明光譯,鋁的環境化學,國立編譯館出版,1999。

    7.楊偉文,“水溶性黏結劑系統射出成型氧化鋁之流變與脫脂行為”,
    國立成功大學材料科學及工程學系,博士論文,民國九十一年六月。

    8.Liu, Yangqiao and Lian Gao, “Dispersion of aqueous alumina
    suspensions using copolymers with synergistic functional groups”
    , Materials Chemistry and Physics, vol. 82(2003) 362-369.

    9.Hind, Andrew R., Suresh K. Bhargava and Stephen C. Grocott,
    “The surface Chemistry of Bayer process solids: a review”,
    Colloids and Surfaces A: Physicochemical and Engineering
    Aspects 146(1999) 359-374.

    10.Panias, D., P. Asimidis and I. Paspaliaris, “Solubility of
    boehmite in concentrated sodium hydroxide solutions: model
    development and assessment”, Hydrometallurgy, vol. 59 (2001) 15-29.

    11.ÖZDEMÍR, MÍNE and ÍLKER KIPÇAK, “Dissolution Kinetics of
    Sepiolite in Hydrochloric Acid and Nitric Acid”, Clays and
    Clay Minerals, Vol. 52, No. 6, 714-721, 2004.

    12.Box, George E. P., William G. Hunter and J. Stuart Hunter,
    “Statistics for Experimenters”, John Wiley & Sons, Inc., pp. 306-344.

    13.Stumm, W. and J.J. Morgan, “Aquatic Chemistry”, John Wiley
    & Sons, 1981.

    14.McHale, J. M., A. Aurous, A. J. Perrotta and A. Navrotsky,
    “Surface Energies and Thermodynamic Phase Stability in
    Nanocrystalline Aluminas”, Science, New Series, Vol.277,
    No. 5327 (Aug. 8, 1997), 788-791.

    下載圖示
    2006-08-23公開
    QR CODE