| 研究生: |
蘇家賦 Su, Jia-Fu |
|---|---|
| 論文名稱: |
能量參數對雷射輔助硬銑削製程之影響 Effect of Energy Parameters on Laser Assisted Hard Milling Process |
| 指導教授: |
王俊志
Wang, Jiunn-Jyh Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 雷射輔助銑削 、刀腹磨耗 、比切削係數 、犁切效應 、雷射能量參數 |
| 外文關鍵詞: | Laser assisted milling, Flank wear, Specific cutting constant, Plowing, Laser energy parameters |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對脈衝與連續波兩種不同雷射輔助方式對不同硬度之模具鋼加工進行探討。由文獻得知相關研究多僅使用連續波雷射為輔助熱源,未有同時比較脈衝與連續波雷射輔助加工之差異,本研究針對此方向進行深入探討。由雷射輔助切削硬化模具鋼之磨耗實驗中可得出連續波雷射輔助加工時降低刀腹磨耗效果較脈衝雷射輔助加工為佳,因脈衝雷射高集中能量之特性會將材料汽化而加速能量散失。本文利用銑削力模式建立切向犁切比切削常數與刀腹磨耗值之關係,並進一步求得比磨耗能以利往後銑削磨耗之預測。本論文於刀腹磨耗實驗中比較有無雷射輔助加工之效應,結果發現在相同磨耗值下,由於工件受熱軟化增加犁切效應,所以雷射輔助銑削之切向犁切比切削常數會高於無雷射輔助銑削。最後進行工件表面觀察,發現雷射輔助銑削硬化模具鋼可有效改善工件毛邊情形,但加工未硬化模具鋼卻成相反趨勢。
The main objective of this work was to compare the results of processing hardened and unhardened tool steel with two kinds of laser assistant method, pulsed laser and continuous wave laser. In the past literature, most research about laser assisted machining only using continuous wave laser, none of them compare impulse an continuous wave laser in the same time, this thesis study in the topic. The result of the wearing experiment obtained that continuous wave laser assistant is the best reducing flank wear, and impulse laser makes is the next best. Next, Ktp of processing hardened tool steel was determined in milling force model, and combined with the measured flank wear value to obtain the specific wearing energy. Compared with the effect reduce flank wearing, under the situation of the same wearing value, because the plowing effect increases due to the softening of heated work piece, the Ktp of milling with laser assistant is higher than that without laser assistant. Otherwise, by observing of the processed work piece, laser assistant milling makes the burr and the roughness of processed unhardened tool steel worse, but improves those properties of hardened tool steel.
Bass, M., Beck, D., and Copley, S. M., 1979, “Laser assisted machining,” European Electro-Optics Conference, 4th,
Utrecht, Netherlands, United States, pp. 233-240.
Budak, E., Altintas, Y., and Armarego, E. J. A. , 1998, “Prediction of Milling Force Coefficients From Orthogonal cutting Data, ” ASME Journal of Manufacturing Science and Engineering, Vol. 118, pp. 216-224.
Dan, I., and Mathew, J., 1990, “Tool Wear and Monitoring Techniques for Turning-A Review,” Int. J. Mach. Tools Manuf. Vol.30, pp.579-598.
Eneres, W. J., DeVor, R. E. and Kapoor, S. G. , 1995, “A Dual-Mechanism Approach to the Prediction of Machining Forces,” ASME Journal of Engineering for Industry, Vol. 117, pp. 526-541.
Geoffrey, B., 1975, “Fundamentals of Metal Machining and Machine Tools, 2nd printing, ”Central Book Company.
Koenigsberger, F., and Sabberwal, A. J. P., 1961, “An Investigation into the Cutting Force Pulsations During Milling Operations, “International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33.
Martellotti, M. E., 1941, “An Analysis of the Milling Process, “Transaction of ASME, Vol. 63, pp.677-700.
Martellotti, M. E., 1945, “An Analysis of the Milling Process, Part 2: Down Milling, “Transaction of ASME, Vol. 67, pp. 233-251.
Melkote, S. N. and Endres, W. J., 1998, “The Importance Of Including Size Effect When Modeling Slot Milling,” ASME Journal of Manufacturing Science and Engineering, Vol. 120, pp. 69-75.
Melkote, S., Kumar, M., Hashimoto, F., and Lahoti, G., 2009, “Laser assisted micro-milling of hard-to-machine materials,” CIRP Annals - Manufacturing Technology, Volume 58, Issue 1, 2009, pp. 45–48
Micheleti, G. F., Koenig, W., and Victor, H. R., 1976, “In process tool wear sensors for cutting operations,” CIRP Annals - Manufacturing Technology, Vol.25, pp. 483-520
Montgomery, D., and Altintas, Y., 1991, “Mechanism of Cutting Force and Surface Generation in Dynamic Milling,” ASME J. Eng. Ind., 113, pp. 160–168.
Pham, D. T., Dimov, S.S., and Petkov, P.V., 2006, “Laser milling of ceramic components”, International Journal of Machine Tools & Manufacture 47 , pp. 618–626
Sabberwal, A. J. P., 1961, “Chip Section and Cutting Force During the Milling Operation,“ Annals of the CIRP, Vol. 10, pp. 197-203.
Sarhan, A., Sayed, R., Nassr, A. and El-Zahry R. M., 2001, “Interrelationships between cutting force variation and tool wear in end-milling, “Journal of Materials Processing Technology, vol. 109, pp. 229-235.
Shaw, M. C., 1995, Metal Cutting Principles, 2nd ed., Oxford, New York.
Shen, X., and Lei, S., 2005, “Three-Dimensional Thermal Analysis for Laser Assisted Milling of Silicon Nitride Ceramics Using FEA,” ASME International Mechanical Engineering Congress and Exposition, November 5 – 11, pp. 445-452.
Shen, X., and Lei, S., 2011, “Experimental study on operating temperature in laser-assisted milling of silicon nitride ceramics”, The International Journal Of Advanced Manufacturing Technology, Volume 52, Numbers 1-4, pp. 143-154
Skvarenina, S., and Shin, Y. C., 2006, “Laser-assisted machining of compacted graphite iron,” International Journal of Machine Tools & Manufacture 46, pp. 7–17
Smith, G. T., 1989, Advanced Machining: The Handbook of Cutting Technology, Springer-Verlag, London.
Sun, S., Brandt, M., and Dargusch, M. S., 2010, “Thermally enhanced machining of hard-to-machine materials—A review,” International Journal of Machine Tools and Manufacture, Volume 50, Issue 8, pp. 663-680.
Tlusty, J. and MacNeil, P., 1975, “Dynamics of Cutting Forces in End Milling, “ CIRP annals, Vol. 24, pp. 21-25.
Wang, J. J., Liang, S. Y. and Book, W. J., 1994, “Convolution Analysis of Milling Force Pulsation, “ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25.
Wang, J. J., 1992, Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification, Ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, April.
Wang, J. J., and Zheng C. M., 2002, “An analytical force model with shearing and ploughing mechanisms for end milling,” International Journal of Machine Tools & Manufacture, Vol.42, pp.761-771.
Wang, J. J., and Zheng, C. M., 2002, “An Analytical Force Model with Shearing and Ploughing Mechanisms for End Milling,” Int. J. Mach. Tools Manuf.,Vol. 42, pp. 761–771.
Weck, M., 1980, Handbook of Machine Tools, John Wiley & Sons Ltd, pp.60–61.
Yellowley, I., 1985, “Observations on the Mean Values of Forces, Torque and Specific Power in the Peripheral Milling Process,” International Journal of Machine Tool Design and Research, Vol. 25, No. 4, pp. 337-346.
張煌權,包含側邊及底面犁切力之端銑及面銑力模式,國立成功大學機械研究所,九十年碩士論文
鄭茗元,SKD61硬化模具鋼銑削特性之探討,國立成功大學機械研究所,九十年碩士論文
郭晉瑋,微量潤滑對刀腹磨耗及銑削穩定性之影響,國立成功大學機械研究所,一百年碩士論文