簡易檢索 / 詳目顯示

研究生: 蘇家賦
Su, Jia-Fu
論文名稱: 能量參數對雷射輔助硬銑削製程之影響
Effect of Energy Parameters on Laser Assisted Hard Milling Process
指導教授: 王俊志
Wang, Jiunn-Jyh Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 78
中文關鍵詞: 雷射輔助銑削刀腹磨耗比切削係數犁切效應雷射能量參數
外文關鍵詞: Laser assisted milling, Flank wear, Specific cutting constant, Plowing, Laser energy parameters
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對脈衝與連續波兩種不同雷射輔助方式對不同硬度之模具鋼加工進行探討。由文獻得知相關研究多僅使用連續波雷射為輔助熱源,未有同時比較脈衝與連續波雷射輔助加工之差異,本研究針對此方向進行深入探討。由雷射輔助切削硬化模具鋼之磨耗實驗中可得出連續波雷射輔助加工時降低刀腹磨耗效果較脈衝雷射輔助加工為佳,因脈衝雷射高集中能量之特性會將材料汽化而加速能量散失。本文利用銑削力模式建立切向犁切比切削常數與刀腹磨耗值之關係,並進一步求得比磨耗能以利往後銑削磨耗之預測。本論文於刀腹磨耗實驗中比較有無雷射輔助加工之效應,結果發現在相同磨耗值下,由於工件受熱軟化增加犁切效應,所以雷射輔助銑削之切向犁切比切削常數會高於無雷射輔助銑削。最後進行工件表面觀察,發現雷射輔助銑削硬化模具鋼可有效改善工件毛邊情形,但加工未硬化模具鋼卻成相反趨勢。

    The main objective of this work was to compare the results of processing hardened and unhardened tool steel with two kinds of laser assistant method, pulsed laser and continuous wave laser. In the past literature, most research about laser assisted machining only using continuous wave laser, none of them compare impulse an continuous wave laser in the same time, this thesis study in the topic. The result of the wearing experiment obtained that continuous wave laser assistant is the best reducing flank wear, and impulse laser makes is the next best. Next, Ktp of processing hardened tool steel was determined in milling force model, and combined with the measured flank wear value to obtain the specific wearing energy. Compared with the effect reduce flank wearing, under the situation of the same wearing value, because the plowing effect increases due to the softening of heated work piece, the Ktp of milling with laser assistant is higher than that without laser assistant. Otherwise, by observing of the processed work piece, laser assistant milling makes the burr and the roughness of processed unhardened tool steel worse, but improves those properties of hardened tool steel.

    總目錄 中文摘要 I ABSTRACT II 致謝 III 總目錄 IV 圖目錄 VII 表目錄 X 符號說明 XII 第一章 1 緒論 1 1.1研究動機 1 1.2 文獻回顧 2 1.2.1 銑削力模式建立文獻回顧 2 1.2.2 各種磨耗量測與判斷之相關文獻 4 1.2.3 雷射輔助加工相關文獻 4 1.3研究範疇及論文架構 6 第二章 7 端銑刀之銑削力模式 7 2.1 前言 7 2.2銑刀座標系統 7 2.3包含剪切、犁切局部側銑模式 10 2.3.1 LGCC局部銑削力模式 11 2.3.2 DGCC局部銑削力模式 12 2.4單刃側銑總銑削力 14 2.4.1屑寬密度函數 14 2.4.2 刀刃序列函數 15 2.4.3 總銑削力 16 2.4.4比切削係數的辨識方法 16 第三章 18 實驗設備 18 3.1前言 18 3.2 脈衝式光纖雷射設備 22 3.3 實驗材料 24 3.4實驗刀具 25 第四章 26 雷射能量參數探討 26 4.1 雷射能量參數 26 4.2 不同能量參數下雷射溝槽觀察 29 4.2.1 光學顯微鏡觀察結果 29 4.2.2 3D雷射共軛焦顯微鏡觀察結果 33 第五章 40 雷射輔助銑削實驗 40 5.1雷射輔助銑削實驗流程 40 5.2 前導實驗-不同切削長度之切削常數 41 5.3刀腹磨耗實驗 47 5.3.1刀具磨耗端銑銑削力模式 47 5.3.2刀腹磨耗實驗參數規劃 48 5.3.3刀腹磨耗定義 50 5.3.4刀腹磨耗在不同雷射輔助方式下對切向犁切力常數之影響 53 5.3.5驗證實驗 61 5.4工件表面觀察 63 5.5雷射離焦效果探討 66 第六章 72 結論與建議 72 6.1結論 72 6.2建議 74 參考文獻 75   圖目錄 圖1- 1未變形之切屑厚度 2 圖2- 1銑刀之座標定義 7 圖2- 2端銑刀徑向及軸向幾何 9 圖2- 3剪切力與犁切力作用位置及方向 11 圖2- 4軸向切深與屑寬密度函數的關係 15 圖2- 5刀具序列函數 15 圖3- 1實驗儀器配置圖 20 圖3- 2 (A) LEADWELL MCV-610AP (B) 普慧高速主軸 E0410-24 20 圖3- 3 SPI G3脈衝式光纖雷射 22 圖3- 4 西門德克 MESS2 4MM碳化鎢銑刀 25 圖4- 1 雷射脈衝頻率對脈衝能量與平均輸出功率關係圖 28 圖4- 2 SPI G3雷射MODE 0~MODE 10脈衝頻率與峰值功率的關係圖 28 圖4- 3 光束腰與聚焦深度示意圖, 30_Toc334114256 圖4- 4 雷射設備架設傾斜角示意圖 30 圖4- 5不同脈衝頻率雷射作用在未硬化SKD61模具鋼(HRC20)的100X顯微鏡照片 31 圖4- 6 不同脈衝頻率雷射作用在硬化SKD61模具鋼(HRC45)的100X顯微鏡照片 32 圖4- 7 KEYENCE VK-9700 色彩3D雷射共軛焦顯微鏡 33 圖4- 8 3D雷射共軛焦顯微鏡量測資訊示意圖 34 圖4- 9 物體表面受雷射作用示意圖, D.T. PHAM (2006) 34 圖 4- 10 不同頻率下30W功率雷射對硬化鋼(HRC45)作用溝槽表面形貌(A) CW (B) 30kHz (C)50 kHz (D)100 kHz (E)500 kHz 36 圖4- 11 不同頻率下24W功率雷射對硬化鋼(HRC45)作用溝槽表面形貌(A) CW (B) 30 kHz (C)50 kHz (D)100 kHz (E)500 kHz 37 圖4- 12 不同頻率下18W功率雷射對硬化鋼(HRC45)作用溝槽表面形貌(A) CW (B) 30 kHz (C)50 kHz (D)100 kHz (E)500 kHz 38 圖5- 1 雷射輔助銑削時域力量變化圖(連續波, 功率30W) 41 圖5- 2 SKD61_HRC45無雷射輔助切削實驗與模擬銑削力 (Kt= 38459.6 (N/mm2) , Kr= 0.5) 43 圖5- 3 SKD61_HRC45脈衝雷射(30kHz)切削實驗與模擬銑削力 (Kt= 8200 (N/mm2) , Kr= 0.436) 44 圖5- 4 SKD61_HRC45連續波雷射切削實驗與模擬銑削力 (Kt= 13301 (N/mm2) , Kr= 0.718 ) 44 圖5- 5不同條件下切削長度對未硬化SKD61模具鋼Kt之關係 45 圖5- 6不同條件下切削長度對未硬化SKD61模具鋼Kr之關係 45 圖5- 7不同條件下切削長度對硬化SKD61模具鋼Kt之關係 46 圖5- 8不同條件下切削長度對硬化SKD61模具鋼Kr之關係 46 圖5- 9 雷射作用點與順銑加工示意圖 49 圖5- 10 雷射設備架設與實際加工情形 49 圖5- 11 全新刀具的刀腹照片 50 圖5- 12刀腹磨耗量測示意圖 50 圖5- 13 刀腹磨耗值與切削距離關係圖 52 圖5- 14 無雷射輔助切削 X與Y方向之時域力量訊號 53 圖5- 15 脈衝雷射輔助切削 X與Y方向之時域力量訊號 54 圖5- 16 連續波雷射輔助切削 X與Y方向之時域力量訊號 54 圖5- 17 磨耗實驗中切削距離與切向比切削常數之關係 56 圖5- 18 磨耗實驗中切削距離與徑向切削常數之關係 56 圖5- 19 Ktp對切削距離之關係 57 圖5- 20不同雷射輔助方式下刀腹磨耗所對應之切向犁切常數 59 圖5-21不同微量潤滑方式下刀腹磨耗所對應之切向犁切常數…………60 圖 5-22 驗證實驗X方向時域力量圖 62 圖5-23驗證實驗Y方向時域力量圖 62 圖5- 24 未硬化模具鋼銑削後表面毛邊高度與俯瞰照片(A)無雷射輔助切削(B)脈衝雷射輔助切削(C)連續波雷射輔助切削 64 圖5- 25 未硬化模具鋼銑削後表面毛邊高度與俯瞰照片(A)無雷射輔助切削(B)脈衝雷射輔助切削(C)連續波雷射輔助切削 65 圖5-26 離焦實驗雷射作用點示意圖 66 圖5-27 離焦實驗離焦0MM(焦距)X方向力量 68 圖5-28 離焦實驗離焦0MM(焦距)Y方向力量 68 圖5-29 離焦實驗離焦4MM,X方向力量 69 圖5-30 離焦實驗離焦4MM,Y方向力量 69 圖5-31 離焦實驗離焦4MM,X方向力量 70 圖5-32 離焦實驗離焦4MM,X方向力量 70 表目錄 表3- 1實驗儀器 19 表3- 2 LEADWELL MCV-610AP型三軸立式綜合加工機規格表 21 表3- 3 雷射設備規格 23 表3- 4 SKD61實驗材料化學成份 24 表3- 5 碳化鎢銑刀規格表 25 表4- 1 Waveform Reference Table 27 表4- 2 不同能量參數對雷射溝槽影響實驗參數 35 表5- 1前導實驗加工參數及材料選用 42 表5-2刀腹磨耗實驗加工參數 48 表5- 3不同雷射輔助刀腹磨耗量測結果 51 表5- 4 磨耗實驗中切削距離與切削常數結果 55 表5- 5 Ktp對切削距離的關係 57 表5- 6不同雷射輔助方式之實驗線性方程式 59 表5- 7不同微量潤滑方式之實驗線性方程式, 郭晉瑋(2011) 60 表 5-8 驗證實驗加工參數 61 表5- 9 不同雷射輔助切削未硬化模具鋼的毛邊高度 64 表5- 10 不同雷射輔助切削硬化模具鋼的毛邊高度 65 表 5-11 離焦實驗加工參數 67 表5-12 離焦實驗銑削力峰值變化百分比 71

    Bass, M., Beck, D., and Copley, S. M., 1979, “Laser assisted machining,” European Electro-Optics Conference, 4th,
    Utrecht, Netherlands, United States, pp. 233-240.

    Budak, E., Altintas, Y., and Armarego, E. J. A. , 1998, “Prediction of Milling Force Coefficients From Orthogonal cutting Data, ” ASME Journal of Manufacturing Science and Engineering, Vol. 118, pp. 216-224.

    Dan, I., and Mathew, J., 1990, “Tool Wear and Monitoring Techniques for Turning-A Review,” Int. J. Mach. Tools Manuf. Vol.30, pp.579-598.

    Eneres, W. J., DeVor, R. E. and Kapoor, S. G. , 1995, “A Dual-Mechanism Approach to the Prediction of Machining Forces,” ASME Journal of Engineering for Industry, Vol. 117, pp. 526-541.

    Geoffrey, B., 1975, “Fundamentals of Metal Machining and Machine Tools, 2nd printing, ”Central Book Company.

    Koenigsberger, F., and Sabberwal, A. J. P., 1961, “An Investigation into the Cutting Force Pulsations During Milling Operations, “International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33.

    Martellotti, M. E., 1941, “An Analysis of the Milling Process, “Transaction of ASME, Vol. 63, pp.677-700.

    Martellotti, M. E., 1945, “An Analysis of the Milling Process, Part 2: Down Milling, “Transaction of ASME, Vol. 67, pp. 233-251.

    Melkote, S. N. and Endres, W. J., 1998, “The Importance Of Including Size Effect When Modeling Slot Milling,” ASME Journal of Manufacturing Science and Engineering, Vol. 120, pp. 69-75.

    Melkote, S., Kumar, M., Hashimoto, F., and Lahoti, G., 2009, “Laser assisted micro-milling of hard-to-machine materials,” CIRP Annals - Manufacturing Technology, Volume 58, Issue 1, 2009, pp. 45–48

    Micheleti, G. F., Koenig, W., and Victor, H. R., 1976, “In process tool wear sensors for cutting operations,” CIRP Annals - Manufacturing Technology, Vol.25, pp. 483-520

    Montgomery, D., and Altintas, Y., 1991, “Mechanism of Cutting Force and Surface Generation in Dynamic Milling,” ASME J. Eng. Ind., 113, pp. 160–168.

    Pham, D. T., Dimov, S.S., and Petkov, P.V., 2006, “Laser milling of ceramic components”, International Journal of Machine Tools & Manufacture 47 , pp. 618–626

    Sabberwal, A. J. P., 1961, “Chip Section and Cutting Force During the Milling Operation,“ Annals of the CIRP, Vol. 10, pp. 197-203.

    Sarhan, A., Sayed, R., Nassr, A. and El-Zahry R. M., 2001, “Interrelationships between cutting force variation and tool wear in end-milling, “Journal of Materials Processing Technology, vol. 109, pp. 229-235.

    Shaw, M. C., 1995, Metal Cutting Principles, 2nd ed., Oxford, New York.

    Shen, X., and Lei, S., 2005, “Three-Dimensional Thermal Analysis for Laser Assisted Milling of Silicon Nitride Ceramics Using FEA,” ASME International Mechanical Engineering Congress and Exposition, November 5 – 11, pp. 445-452.

    Shen, X., and Lei, S., 2011, “Experimental study on operating temperature in laser-assisted milling of silicon nitride ceramics”, The International Journal Of Advanced Manufacturing Technology, Volume 52, Numbers 1-4, pp. 143-154

    Skvarenina, S., and Shin, Y. C., 2006, “Laser-assisted machining of compacted graphite iron,” International Journal of Machine Tools & Manufacture 46, pp. 7–17

    Smith, G. T., 1989, Advanced Machining: The Handbook of Cutting Technology, Springer-Verlag, London.

    Sun, S., Brandt, M., and Dargusch, M. S., 2010, “Thermally enhanced machining of hard-to-machine materials—A review,” International Journal of Machine Tools and Manufacture, Volume 50, Issue 8, pp. 663-680.

    Tlusty, J. and MacNeil, P., 1975, “Dynamics of Cutting Forces in End Milling, “ CIRP annals, Vol. 24, pp. 21-25.

    Wang, J. J., Liang, S. Y. and Book, W. J., 1994, “Convolution Analysis of Milling Force Pulsation, “ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25.

    Wang, J. J., 1992, Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification, Ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, April.

    Wang, J. J., and Zheng C. M., 2002, “An analytical force model with shearing and ploughing mechanisms for end milling,” International Journal of Machine Tools & Manufacture, Vol.42, pp.761-771.

    Wang, J. J., and Zheng, C. M., 2002, “An Analytical Force Model with Shearing and Ploughing Mechanisms for End Milling,” Int. J. Mach. Tools Manuf.,Vol. 42, pp. 761–771.
    Weck, M., 1980, Handbook of Machine Tools, John Wiley & Sons Ltd, pp.60–61.

    Yellowley, I., 1985, “Observations on the Mean Values of Forces, Torque and Specific Power in the Peripheral Milling Process,” International Journal of Machine Tool Design and Research, Vol. 25, No. 4, pp. 337-346.

    張煌權,包含側邊及底面犁切力之端銑及面銑力模式,國立成功大學機械研究所,九十年碩士論文

    鄭茗元,SKD61硬化模具鋼銑削特性之探討,國立成功大學機械研究所,九十年碩士論文

    郭晉瑋,微量潤滑對刀腹磨耗及銑削穩定性之影響,國立成功大學機械研究所,一百年碩士論文

    下載圖示 校內:2017-09-04公開
    校外:2017-09-04公開
    QR CODE