| 研究生: |
利鴻源 Li, Hong-Yuan |
|---|---|
| 論文名稱: |
液態燃料薄膜燃燒室應用於可攜式TPV動力系統之性能研究 Performance of a Liquid Fuel-Film Combustor Applied in a Portable TPV System |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 液態燃料薄膜燃燒器 、輻射器 、熱光電(TPV)動力系統 、迴流管 、GaSb光電板 |
| 外文關鍵詞: | GaSb PV cell, Reverse tube, Liquid fuel-film combustor, Emitter, Thermophotovoltaic(TPV) power generation system |
| 相關次數: | 點閱:92 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文重點在於將一小型液態燃料薄膜燃燒器和光電板結合,應用於可攜式熱光電(TPV)動力系統之設計與探討。在液態燃料薄膜燃燒器中利用金屬多孔性材料之特性,增加接觸面積和熱傳導率以加速液態燃料之汽化,並進而達到穩駐火燄的效果。基於這個概念,吾人在介觀尺度下建立一中間多孔性油注式液態燃料薄膜燃燒室結合熱光電系統並加以測試。在TPV系統中利用一個遠紅外線陶瓷管(ZrO2)當做幅射器(Emitter),並應用迴流管(Reverse tube)的設計,藉此改變流場結構,迫使火焰貼附壁面以提高輻射器表面溫度,除此之外,改變熱氣的行進方向來達成再次加熱幅射器表面,使其溫度和亮度進一步提升並且提高其亮度分佈均勻度。因此,幅射器的整體發光效率有顯著地提升,並且火焰會完全地被限制在燃燒室中。利用紅外線測溫槍測量輻射器表面溫度和火焰自然螢光分析火焰結構以及氣體分析儀量測廢氣並估算燃燒效率,藉此找出此燃燒室最佳操作區間,最後,結合高效率的GaSb光電板組合成一TPV動力系統,使用電子負載量測此系統之I-V圖來估算整體效率,並和理想效率值比較,進一步討論如何提高整體效率。由實驗中可看出燃料種類,燃料入口流速和當量比以及迴流管和輻射器之間的距離皆會對TPV系統之效率有顯著之影響。
The major objective of this thesis is to develop a miniature liquid fuel-film combustor applied in a portable thermophotovoltaic (TPV) power generation system. A novel metal-porous medium is proposed to input in the form of a liquid fuel-film on the porous surface for the liquid-fuel-film combustor. It is an effective method to enhance the contact surface, to increase conduction heat transfer for liquid fuel vaporization and to stabilize the flame. Based on this concept, a meso-scale liquid fuel-film combustor with central porous fuel inlets applied in TPV power system is developed and tested. An infrared thermal tube (ZrO2) is used as the emitter of the TPV system. A new reverse tube design is proposed to modify fluid field, and further to force flames attaching on the wall to enhance thermal emission from the emitter. Besides, the reverse tube redirects hot product gas to reheat the wall in order to further enhancing and unifying the radiation of the emitter wall. Consequently, the radiation efficiency of the emitter is significantly increased and the flame can be completely confined inside the chamber. In order to optimize operation condition of this combustor, surface temperature of the emitter is measured by an infrared thermometer, flame structure is measured by chemiluminescence, and combustion efficiency of this combustor is estimated by gas emissions measured by a gas analyzer. Finally, the combustor is integrated with an high-efficiency GaSb PV cells array into a complete TPV system. According to measured I-V curve, maximum operational electric output of the overall TPV system is examined and evaluated. Compared to the theoretical efficiency, the deviation of the overall efficiencies reveals the heat loss and shortcomings in design. The resultant I-V performance indicates that the distance between emitter and reverse tube, fuel energy input, fuel types, and equivalence ratio are major elements related to the electrical power output of the TPV system.
Amano Takashi, Yamaguchi Masafumi, 2001, “Anaiysis of energy balance of electricity generated by TPV generators”, Solar Energy Materials & Solar Cells, vol. 66, pp. 579-583.
Ahn, J., Eastwood, C., Sitzki, L., Ronney, P. D., 2005, “Gas-phase and catalytic combustion in heat-recirculating burners”, Proc. Combust. Instit., vol. 30, pp. 2463-2472.
Bitnar, B., Durisch, W., Mayor, J. C., Sigg, H., Tschudi, H. R., 2002, “Characterisation of rare earth selective emitters for thermophotovoltaic applications”, Solar Energy Materials & Solar Cells, vol. 73, pp. 221-234.
Cockeram, B. V., Measures, D. P., Mueller, A. J., 1999, “The development and testing of emissivity enhancement coatings for themophotovoltaic (TPV) radiator applications”, Thin Solid Films, vol. 355, pp. 17-25.
Cockeram, B. V., Hollenbeck, J. L., 2002, “The spectral emittance and long-term thermal stability of coatings for thermophotovoltaic (TPV) radiator applications”, Surface and Coating Technology, vol. 157, pp. 274-281.
Colangelo, G., Risi, A., Lagforgia, D., 2006, “Experimential study of a burner with high temperature heat recovery system for TPV applications”, Energy Conversion and Management, vol. 47, pp. 1192-1206.
Chen, Y. B., Zhang, Z. M., 2007, “Design of tungsten complex gratings for thermophotovoltaic radiators”, Optics Communication, vol. 269, pp. 411-417.
Durish, W., Bitnar B., Roth F. von, Palfinger G., 2003, “Small thermophotovoltaic prototype systems”, Solar Energy, vol. 75, pp. 11-15.
Deng, W., Klemic, J. F., Li, X., Reed, M. A., Gomez, A., 2007, “Liquid fuel microcombustors using microfabricated multiplexed electrospray sources”, Proc. Combust. Inst., vol. 31, pp. 2239-2246.
Ferguson, L. G., and Dogan, F., 2001, “A highly efficient NiO-Doped MgO matched emitter for thermophotovoltaic energy conversion”, Materials Science and Engineering B, vol. 83, pp. 35-41.
Ferguson, L. G., and Dogan, F., 2001, “Spectrally selective, matched emitters for thermophotovoltaic energy conversion processed by tape coating”, Materials Science, vol.36, pp. 137-146.
Fernandez-Pello, A. C., 2003, “Micropower generation using combustion: Issues and approaches”, Proc. Combust. Inst., vol. 29, pp. 883-899.
Gaydon, A. G., 1974, The Spectroscopy of Flames, Chapman and Hall Ltd, 2nd edition, pp. 159
Kim, N. I, Kato, S., Kataoka, T., Yokomori, T., Maruyama, S., Fujimori, T., Maruta, K., 2005, “Flame stabilization and emission of small swiss-roll combustors as heaters”, Combustion and Flame, vol. 141, pp. 229-240.
Licciulli Antonio, Maffezzoli Alfonso, Diso Daniela, Tundo Stefania, Monia Rella, 2003, “Sol-Gel Preparation of Selective Emitters for Thermophotovoltaic Conversion”, Sol-Gel Science and Technology, vol. 26, pp. 1119-1123.
Lindberg, E., Broman, L., 2003, “Faberg optics and edge filter for a wood powder fuelled thermophotovoltaic system”, Renewable Energy, vol. 28, pp. 373-384
Li, Y. H., Chao, Y. C., Sarzi-Amade’, N., Dunn-Rankin, D., 2008, “Progress in miniature liquid film combustors: double chamber and central porous fuel inlet designs”, Exp. Thermal Fluid Sci., vol. 32, pp.1118-1131.
Li, Y. H., “Development of a meso-scale fuel-film combustor with central-porous fuel inlet”, Ph.D. dissertation, NCKU, Tainan, Taiwan, 2008.
Nakagawa Narihito, Ohtsubo Hideki, Yugami Hiroo, 2005, “Thermai emission properties of Al2O3/ER3Al5O12 eutectic ceramics”, European Ceramics Society, vol. 25, pp. 1285-1291.
Pham, T. K., Dunn-Rankin, D., Sirignano, W. A., 2007, “Flame structure in small-scale liquid film combustors”, Proc. Combust. Inst., vol. 31, pp. 3269-3275.
Pham, T. K., “Flame structure and stabilization in miniature liquid film combustors”, Ph.D. dissertation, UC Irvine, CA, USA, 2006.
Pan, J. F., Huang , J., Li, D. T., Tang, W. M., Xue, H., 2007, “Effects of major parameters on micro combustion for thermophotovoltaic energy conversion,” Applied Thermal Engineering, vol. 27, pp. 1089-1095.
Park, K., Basu, S., King, W. P., Zhang, Z. M., 2008, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution”, Quantitative Spectroscopy & Radiative Transfer, vol.109, pp. 305-316.
Qiu, K., Hayden, A. C. S., 2003, “Thermophotovoltaic generation of electricity in a gas fired heater: Influence of radiant burner configurations and combustion process”, Energy Conversion and Management, vol. 47, pp. 365-376.
Qiu, K., Hayden, A. C. S., 2007, “Thermophotovoltaic power generation systems using gas-fired radiant burners”, Solar Energy Materials & Solar Cells, vol. 91, pp. 588-596.
Shu, Z., Krass, B. J., Choi, C. W., Aggarwal, S. K., Katta, V. R., Puri, I. K., 1998, “An experimental and numerical investigation of the structure of steady two-dimensional partially premixed methane-air flames”, Proc. Combust. Inst., vol. 27, pp. 625-632
Schubnell, M., Benz, P., and Mayor, J. C., 1998, “Design of a thermophotovoltaic residential heating system”, Solar Energy Materials & Solar Cells, vol. 52, pp. 1-9.
Sirignano, W. A., Pham, T. K., Dunn-Rankin, D., 2002, “Miniature-scale liquid-fuel-film combustor”, Proc. Combust. Inst., vol. 29, pp. 925-931.
Timothy J. Coutts*, 2001, “An overview of thermophotovoltaic generation of electricity”, Solar Energy Materials & Solar Cells , vol. 66, pp. 443-452.
Viorel Badescu *, 2005, “Upper bounds for solar thermophotovoltaic efficiency”, Renewable Energy, vol. 30, pp. 211-225.
Yang, W. M., Chou, S. K., Shu, C., Xue, H., Li, Z. W., Li, D. T., Pan, J. F., 2003, “Microscale combustion research for application to micro thermophotovoltaic systems”, Energy Conv. Manag., vol. 44, pp. 2625-2634.
Yamaguchi, Masafumi, 2003, “Ⅲ-Ⅴ compound multi-junction solar cells present and future”, Solar Energy & Solar Cells, vol. 75, pp. 261-269.