| 研究生: |
蕭奕成 Hsiao, Yi-Cheng |
|---|---|
| 論文名稱: |
應用分子動力學研究矽基板上以高能碳原子團簇斜角入射生長之類鑽碳薄膜 Molecular dynamics simulation study of the growth of diamond-like carbon film by oblique incidence of high-energy carbon clusters on silicon substrate |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 分子動力學 、類鑽碳薄膜 、碳原子團簇 、入射角 、Tersoff potential |
| 外文關鍵詞: | molecular dynamics, diamond-like carbon film, carbon cluster, incident angle, Tersoff potential |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
類鑽碳薄膜DLC(diamond-like carbon film)具有堅硬、耐磨耗、抗腐蝕等優良的力學性質,亦能擁有同石墨般良好的導電、乾潤滑特性。性質的偏向與薄膜中碳與碳之間sp3及sp2鍵結含量的多寡習習相關,是評估DLC特性的重要指標。由於針對非晶材料微結構組成的分析設備有其極限,在原子尺度下數值模擬是另一可靠的研究工具,可以深入洞察DLC薄膜結構與其性能間的關係,並觀測DLC成膜過程中發生的各種現象。
本文利用分子動力學模擬C60團簇於矽(001)基板的成膜過程。探討高入射能量(5~20ev/atom)及入射角度變化(0°~45°)對薄膜內各種性能指標的影響。
研究顯示較低能量(5ev/atom)的團簇沉積容易受到入射角度影響,生成多孔且粗糙的薄膜,並有sp3含量下降的情況;然而較高能沉積(10ev/atom)的薄膜性質並不易受角度影響,且能同時兼備均質、高密度、高sp2含量等優點;然而當入射能量過高(15ev/atom)時,角度效應幾乎無法察覺,薄膜性質則因矽原子大量濺入而劣化,因為矽、碳會結合成碳化矽,阻礙DLC的成長。
Diamond-like carbon (DLC) films are composed of carbon bonds with different hybridizations, including sp2, sp3 and even sp. Understanding the atomic bonding structure is essential to understanding the properties and optimizing the process parameters of the films. Because of the limited analytical tools for characterizing the atomic bonding structure in amorphous materials, computational research at the atomistic scale could provide significant insight into the structure-property relationships in diamond-like carbon films and has been applied to understanding the various phenomena occurring during DLC film growth.
The influence of incident energy(5~20ev/atom) and incident angles(0°~45°) of energetic C60 clusters on the structure and properties of DLC films on silicon(001) substrate was investigated by the molecular dynamics simulation using a Tersoff interatomic potential.
The present simulation revealed that when the incident energy was relatively low (5ev/atom), as the incident angles increased, the surface roughness of DLC films increased and the more porous structure was generated, and therefore decreased the amount of sp3 but increase sp2. However, properties of films grown by higher energy deposition (10ev/atom) is not susceptible to the variations in incident angle, and could at the same time maintain homogeneous, high-density, and high-sp2 content structure. The effect of incident angle was almost imperceptible to the properties of film while the incident energy exceeded 15ev/atom, because impact of high energy clusters would sputter silicon atoms into to the film. Thus it deteriorated the film due to the formation of silicon carbide, which would hinder the growth of DLC.
[1]Aisenber.S, and Chabot, R., “ION-BEAM DEPOSITION OF THIN FILMS OF DIAMONDLIKE CARBON,” Journal of Applied Physics, vol. 42, no. 7, pp. 2953-&, 1971.
[2]劉明喬, “矽基板上以不同碳團簇成長類鑽碳薄膜之分析,” 國立成功大學, 機械工程學系, 2011.
[3]洪銘鴻, “混合式碳源之類鑽碳膜磨潤性能之研究,” 國立成功大學, 機械工程學系, 2004.
[4]鈴木秀人。池永勝, DLC成膜技術, 臺北: 全華科技圖書股份有限公司, 2005.
[5]Erdemir, A., Nilufer, I.B., Eryilmaz, O.L., Beschliesser, M., and Fenske, G.R., “Friction and wear performance of diamond-like carbon films grown in various source gas plasmas,” Surface & Coatings Technology, vol. 120, pp. 589-593, Nov, 1999.
[6]Kelires, P.C., “Intrinsic stress and local rigidity in tetrahedral amorphous carbon,” Physical Review B, vol. 62, no. 23, pp. 15686-15694, Dec, 2000.
[7]張勳承, “應用分子動力學於合金團簇沈積製程之研究,” 國立成功大學, 機械工程學系, 2010.
[8]Yamada, I., and Takaoka, G.H., “IONIZED CLUSTER BEAMS - PHYSICS AND TECHNOLOGY,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 32, no. 5A, pp. 2121-2141, May, 1993.
[9]Paillard, V., Melinon, P., Dupuis, V., Perez, J.P., Perez, A., and Champagnon, B., “DIAMOND-LIKE CARBON-FILMS OBTAINED BY LOW-ENERGY CLUSTER BEAM DEPOSITION - EVIDENCE OF A MEMORY EFFECT OF THE PROPERTIES OF FREE CARBON CLUSTERS,” Physical Review Letters, vol. 71, no. 25, pp. 4170-4173, Dec, 1993.
[10]Ma, X.L., and Yang, W., “Supersonic wave propagation in Cu under high speed cluster impact,” Nanotechnology, vol. 15, no. 5, pp. 449-456, May, 2004.
[11]Cuomo, J.J., Doyle, J.P., Bruley, J., and Liu, J.C., “SPUTTER DEPOSITION OF DENSE DIAMOND-LIKE CARBON-FILMS AT LOW-TEMPERATURE,” Applied Physics Letters, vol. 58, no. 5, pp. 466-468, Feb, 1991.
[12]Fallon, P.J., Veerasamy, V.S., Davis, C.A., Robertson, J., Amaratunga, G.A.J., Milne, W.I., and Koskinen, J., “PROPERTIES OF FILTERED-ION-BEAM-DEPOSITED DIAMOND-LIKE CARBON AS A FUNCTION OF ION ENERGY,” Physical Review B, vol. 48, no. 7, pp. 4777-4782, Aug, 1993.
[13]Weiler, M., Sattel, S., Jung, K., Ehrhardt, H., Veerasamy, V.S., and Robertson, J., “HIGHLY TETRAHEDRAL, DIAMOND-LIKE AMORPHOUS HYDROGENATED CARBON PREPARED FROM A PLASMA BEAM SOURCE,” Applied Physics Letters, vol. 64, no. 21, pp. 2797-2799, May, 1994.
[14]Sattel, S., Giessen, T., Roth, H., Scheib, M., Samlenski, R., Brenn, R., Ehrhardt, H., and Robertson, J., “Temperature dependence of the formation of highly tetrahedral a-C:H,” Diamond and Related Materials, vol. 5, no. 3-5, pp. 425-428, Apr, 1996.
[15]Ferrari, A.C., Robertson, J., Beghi, M.G., Bottani, C.E., Ferulano, R., and Pastorelli, R., “Elastic constants of tetrahedral amorphous carbon films by surface Brillouin scattering,” Applied Physics Letters, vol. 75, no. 13, pp. 1893-1895, 1999.
[16]Kaukonen, H.P., and Nieminen, R.M., “MOLECULAR-DYNAMICS SIMULATION OF THE GROWTH OF DIAMOND-LIKE FILMS BY ENERGETIC CARBON-ATOM BEAMS,” Physical Review Letters, vol. 68, no. 5, pp. 620-623, Feb, 1992.
[17]Tersoff, J., “Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon,” Physical Review Letters, vol. 61, no. 25, pp. 2879-2882, 1988.
[18]Tersoff, J., “New empirical approach for the structure and energy of covalent systems,” Physical Review B, vol. 37, no. 12, pp. 6991-7000, 1988.
[19]Tersoff, J., “Modeling solid-state chemistry:
Interatomic potentials for multicomponent systems,” Physical Review B, vol. 39, no. 8, pp. 5566-5568, 1989.
[20]Haberland, H., Insepov, Z., and Moseler, M., “MOLECULAR-DYNAMICS SIMULATION OF THIN-FILM GROWTH BY ENERGETIC CLUSTER-IMPACT,” Physical Review B, vol. 51, no. 16, pp. 11061-11067, Apr, 1995.
[21]Pan, Z.Y., Zhu, W.J., Man, Z.Y., Xu, Y., and Ho, Y.K., “Investigation of low-energy carbon cluster depositions on surfaces by a molecular dynamics simulation,” Surface & Coatings Technology, vol. 128, pp. 76-80, Jun-Jul, 2000.
[22]Chang, J.G., Hwang, C.C., Ju, S.P., and Huang, S.H., “A molecular dynamics simulation investigation into the structure of fullerene C60 grown on a diamond substrate,” Carbon, vol. 42, no. 12-13, pp. 2609-2616, 2004.
[23]Halac, E., Reinoso, M., Dall’Asén, A., and Burgos, E., “Molecular dynamics simulation of the growth of thin films by deposition of carbon atoms and C60 molecules on diamond and silicon substrates,” Physical Review B, vol. 71, no. 11, 2005.
[24]Ma, T.B., Hu, Y.Z., Wang, H., and Li, X., “Effect of impact angle and substrate roughness on growth of diamond-like carbon films,” Journal of Applied Physics, vol. 101, no. 1, pp. 5, Jan, 2007.
[25]Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., and Sinnott, S.B., “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons,” Journal of Physics-Condensed Matter, vol. 14, no. 4, pp. 783-802, Feb, 2002.
[26]Ma, T.-B., Hu, Y.-Z., and Wang, H., “Growth of ultrathin diamond-like carbon films by C60 cluster assembly: Molecular dynamics simulations,” Diamond and Related Materials, vol. 18, no. 1, pp. 88-94, 2009.
[27]Huang, D.M., Pu, J.B., Lu, Z.B., and Xue, Q.J., “Microstructure and surface roughness of graphite-like carbon films deposited on silicon substrate by molecular dynamic simulation,” Surface and Interface Analysis, vol. 44, no. 7, pp. 837-843, Jul, 2012.
[28]Joe, M., Moon, M.W., Oh, J., Lee, K.H., and Lee, K.R., “Molecular dynamics simulation study of the growth of a rough amorphous carbon film by the grazing incidence of energetic carbon atoms,” Carbon, vol. 50, no. 2, pp. 404-410, Feb, 2012.
[29]Li, X.W., Ke, P.L., Lee, K.R., and Wang, A.Y., “Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films,” Thin Solid Films, vol. 552, pp. 136-140, Feb, 2014.
[30]饒智昇, “以分子動力學方法研究奈米級微結構的力學問題,” 國立成功大學, 機械工程學系, 1999.
[31]陳政隆, 分子模擬的理論與實踐, 北京: 化學工業出版社, 2007.
[32]江建軍, 計算材料學︰設計實踐方法, 北京: 高等教育出版社, 2010.
[33]Hailie, J.M., Molecular Dynamics Simulation:Elementary Methods, New York: John Wiley & Sons. Inc., 1997.
[34]姜秉辰, “以分子動力學研究奈米碳管挫曲變形之型態與機制,” 國立中正大學, 機械工程學系, 2008.
[35]Naeem, R. "UC Davis ChemWiki:Lennard-Jones Potential,"Nov,30th,2014;
http://chemwiki.ucdavis.edu/Physical_Chemistry/Intermolecular_Forces/Lennard-Jones_Potential.
[36]朱訓鵬, “分子動力學與平行運算於奈米薄膜沉積模擬之應用,” 國立成功大學, 機械工程學系, 2002.
[37]鄭盟潔, “分子動力學應用於奈米及功能梯度材料,” 國立雲林科技大學, 機械工程學系, 2009.
[38]Tersoff, J., “New empirical model for the structural properties of silicon,” Physical Review Letters, vol. 56, no. 6, pp. 632-635, 1986.
[39]Tersoff, J., “Empirical interatomic potential for silicon with improved elastic properties,” Physical Review B, vol. 38, no. 14, pp. 9902-9905, 1988.
[40]Nordlund, K., Keinonen, J., and Mattila, T., “Formation of ion irradiation induced small-scale defects on graphite surfaces,” Physical Review Letters, vol. 77, no. 4, pp. 699-702, Jul, 1996.
[41]Erhart, P., and Albe, K., “Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide,” Physical Review B, vol. 71, no. 3, pp. 14, Jan, 2005.
[42]Sha, Z.D., Branicio, P.S., Pei, Q.X., Sorkin, V., and Zhang, Y.W., “A modified Tersoff potential for pure and hydrogenated diamond-like carbon,” Computational Materials Science, vol. 67, pp. 146-150, Feb, 2013.
[43]Izumi, S., The University of Tokyo, Department of Mechanical Engineering. "Potential form and its derivative of the Tersoff potential," Nov, 30th, 2014; http://www.fml.t.u-tokyo.ac.jp/~izumi/papers/potential_
tersoff.pdf.
[44]Moriguchi, K., and Shintani, A., “Verification of Tersoff's potential for static structural analysis of solids of group-IV elements,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 37, no. 2, pp. 414-422, Feb, 1998.
[45]孫允武,國立中興大學,物理學系. "半導體物理簡介," Nov, 30th,2014;http://ezphysics.nchu.edu.tw/prophys/condmatt/handouts/chap8semicon/semicond.pdf.
[46]Nurminen, L., Tavazza, F., Landau, D.P., Kuronen, A., and Kaski, K., “Comparative study of Si(001) surface structure and interatomic potentials in finite-temperature simulations,” Physical Review B, vol. 67, no. 3, pp. 10, Jan, 2003.
[47]" Wikipedia, the free encyclopedia:Truncated icosahedron," Nov,30th, 2014; http://en.wikipedia.org/wiki/Truncated_icosahedron#cite_note-1.
[48]孫光中, 曾毓慧, and 孫光明, “三角函數與空間座標轉換解析富勒烯C60奈米碳球結構,” CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI), vol. 64, no. 1, pp. 147-160, March, 2006.
[49]E.R. Cohen, T., Cvitas, J.G., Frey, B., Holmström, K., Kuchitsu, R., Marquardt, I., Mills, F., Pavese, M., Quack, J., Stohner, H.L., Strauss, M., Takami, and Thor, A.J., Quantities, Units and Symbols in Physical Chemistry, 3rd ed., Cambridge: IUPAC & RSC Publishing, 2008.
[50]Joe, M., Han, Y.K., Lee, K.R., Mizuseki, H., and Kim, S., “An ideal polymeric C-60 coating on a Si electrode for durable Li-ion batteries,” Carbon, vol. 77, pp. 1140-1147, Oct, 2014.
[51]Dong, L., Smith, R.W., and Srolovitz, D.J., “A two-dimensional molecular dynamics simulation of thin film growth by oblique deposition,” Journal of Applied Physics, vol. 80, no. 10, pp. 5682-5690, Nov, 1996.
[52] Jäger, H.U., and Albe, K., “Molecular-dynamics simulations of steady-state growth of ion-deposited tetrahedral amorphous carbon films,” Journal of Applied Physics, vol. 88, no. 2, pp. 1129, 2000.
[53]Xu, S.P., Li, X.W., Huang, M.D., Ke, P.L., and Wang, A.Y., “Stress reduction dependent on incident angles of carbon ions in ultrathin tetrahedral amorphous carbon films,” Applied Physics Letters, vol. 104, no. 14, pp. 4, Apr, 2014.
[54]Lee, S.H., Lee, C.S., Lee, S.C., Lee, K.H., and Lee, K.R., “Structural properties of amorphous carbon films by molecular dynamics simulation,” Surface & Coatings Technology, vol. 177, pp. 812-817, Jan, 2004.
[55]Berendsen, H.J.C., Postma, J.P.M., Vangunsteren, W.F., Dinola, A., and Haak, J.R., “MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH,” Journal of Chemical Physics, vol. 81, no. 8, pp. 3684-3690, 1984, 1984.