簡易檢索 / 詳目顯示

研究生: 陳冠竹
Chen, Kuan-Chu
論文名稱: 氮磷化銦鎵的光電性質與溫度的關係
Dependence of the Electro-Optic Properties of InGaP(N) on Temperature
指導教授: 黃正雄
Hwang, Jenn-Shyong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 61
中文關鍵詞: 光調制光譜激發螢光光譜光電特性價帶分裂氮磷化銦鎵
外文關鍵詞: valence band splitting, photoreflectance spectroscopy, photoluminescences spectroscopy, InGaPN, electro-optic properties
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    在本論文中我們利用光調制光譜及光激發螢光光譜來研究不同氮摻雜濃度下In0.54Ga0.46P1-yNy/GaAs(y=0~0.01)異質接面結構的光電特性,由光調制光譜的譜線中我們觀察到因有序效應及應變效應造成的價帶分裂所產生的能隙分裂值Eg、 Eg+△12、Eg+△13(分別為導帶與價帶間的能隙值、晶場/應變造成的價帶分裂、自旋-軌道造成的的價帶分裂),並由雙晶格X-ray繞射可判斷出樣品為同調磊晶結構及樣品產生壓縮應變。
    由不同溫度下的光調制光譜及光激發螢光光譜,我們探討能隙隨溫度變化的情形及氮摻雜造成的影響,經由對譜線的擬合我們得到Eg、Eg+△12、Eg+△13的能隙值,接著以Varshni半經驗公式對能隙隨溫度變化的情形做擬合比較並討論溫度的影響,同時我們發現由於氮的摻雜所造成的缺陷(包含nitrogen isolation,nitrogen pairs,nitrogen clusters)在低溫時會對譜線產生較明顯的影響,對光調制光譜而言,使的在低溫時譜線的強度減弱,對光激發螢光光譜而言,造成在低溫時有缺陷能階的產生,而此情形可使樣品經退火的處理而獲得改善,最後我們將此兩種量測方法所得到的結果做比較,發現光調制光譜所量測到的能隙值較光激發螢光光譜大,造成此現象的原因可能為氮摻雜所產生的缺陷或測量到的能隙是由激子能階至價帶的躍遷所造成的。

    Abstract

    This study investigates the electro-optic properties of In0.54Ga0.46P1-yNy/GaAs(y=0~0.01)heterostructures with different nitrogen concentration by photoreflectance (PR) and photoluminescence (PL) spectroscopy. The valence band maximum, crystal field/strain splitting, and spin-orbit splitting to conduction band minimum transition energies, denoted as Eg, Eg+△12, and Eg+△13, are observed in PR spectrum. With the double-crystal X-ray diffraction measurement, moreover, we can determine the samples are coherent epitaxial structure and compressive strain.

    We investigate the variation of energy gap and influence of nitrogen incorporation using PR and PL spectra at different temperatures. By fitting the experimental results to the theoretical relation, Eg, Eg+△12, and Eg+△13 can be accurately determined. We can describe the influence of temperature in terms of a least-squares fit of the experimentally observed energy values to the Varshni semiempirical relationship. Moreover, we can observe defects (including nitrogen isolation, nitrogen pairs, and nitrogen clusters) due to nitrogen incorporation and their apparent influence on the low temperature spectra. For PR measurement, the intensity of spectrum decreases with temperature at low temperature. For PL measurement, the defect level energy produces at low temperature. But we can improve the quality of the samples after annealing. Finally, we compare the results of two methods and find Eg, Eg+△12, and Eg+△13 we obtain from PR measurement are larger than PL measurment. This may due to the greater sensitivity of PL spectra to defects due to nitrogen incorporation and/or radiative recombination from the excitonic band tail state.

    目錄 第一章 緒論............................................1 第二章 光調制光譜學....................................6 2-1 低電場調制…………………………………………………9 2-2 Franz-Keldysh振盪………………………………………10 2-3 光調制光譜的機制…………………………………………12 第三章 光調制光譜實驗裝置………………………………………15 第四章 光激發螢光光譜..................................18 第五章 氮磷化銦鎵光電性質的研究………………………………22 5-1 樣品簡介……………………………………………………23 5-2 應變效應……………………………………………………24 5-3 不同溫度下的光調制光譜譜線……………………………30 5-4 不同溫度下的光激發螢光光譜譜線………………………37 5-5 光調制光譜與光激發螢光光譜的比較……………………46 第六章 總結…………………………………………………………49 參考文獻…………………………………………………………………51

    參考文獻

    1. See, for example, K. Onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401 (1986)
    2. S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444 (1986)
    3. R. Dingle, W. Wiegman, and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974)
    4. C. Weisbuch, R. C. Miller, R.Dingle, A.C. Gossard, and W. Wiegmann, Solid State Commu. 37, 219 (1981)
    5. A. C. Wright and J. O. Williams, Mat. Letts. 3, 80 (1985);R. D. Dupuis, R. C. Miller and P. M. Petroff, Mat. Letts. 3, 398 (1985)
    6. H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58, 1429 (1987)
    7. F. Bassni and G. P. Parravicini, Electric State and Opitical Transition in Solid (America Press, 1975) and D. E. Aspnes, in Handbook on Semiconductors, ed. By T. S. Moss (North-Holland, New York, 1980) Vol. 2, p. 109.
    8. M. Cardona, in Modulation Spectroscopy, (Academic, New York, 1969) and Reference therein.
    9. H. Shen, S. H. Pan, F. H. Pollak, M. Dutta and T. R. AuCoin, Phys. Rev. B36, 9384 (1987).
    10. L. Esaki, in Proceedings of the 17th International Conference on the Physics of Semiconductors, Berkely, 1984, ed. by J. O. Chodi and W. A. Harrison (Spinger Verlay, N. Y. 1985) p.473.
    11. L. Esaki in Recent Topics in Semiconductor Physics, ed. by Kamimurus and Toyozawa, World Scientific, Singpor, 1983, p.1.
    12. P. C. Klipstein and N. Apsley, J. Phys. C: Solid State Phys. 19, 6461 (1986).
    13. W. Zhou, H. Shen, J. Pamulapati, P. Cooke and M. Dutta, Appl. Phys. Lett. 66, 607 (1995).
    14. D. S. Chemla, B. Joseph, J. M. Kuto, T. Y. Chang, C. Klingshirn, G. Livescu and David A. B. Miller, IEEE J. Quantum Electron. vol. 24, 1664 (1988).
    15. S. Monéger, Y. Baltagi, T. Benyattou, A. Tabata, B. Ragot, G. Guillot, A. Georgakilas, K. Zekentes and G. Halkias, J. Appl. Phys. 74, 1437 (1993).
    16. Stephen Giugni, T. L. Tansley, F. Green, C. Shwe and M. Gal, J. Appl. Phys. 71, 3486 (1992).
    17. L. Aigouy, F. H. Pollak and G. Gumbs, Appl. Phys. Lett. 70, 2562 (1997).
    18. C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen and K. K. Tiong, J. Appl. Phys. 81, 400 (1997).
    19. V. L. Alperovich, A. S. Jaroshevich, D. I. Lubyshev, V. P. Migal, V. V. Preobrazhenskii and B. R. Semjagin, Superlattices and Microstructures vol. 10, 131 (1991).
    20. J. Humlicek, F. Lukes and K. Dloog, Superlattices and Microstructures vol. 9, 133 (1991).
    21. M. Nakayama, T. Doguchi and H. Nishimura, J. Appl. Phys. 72, 2372 (1992).
    22. P. A. M. Rodrigues, F. Cerdeira and J. C. Bean, Phys. Rev. B 46, 15263 (1992).
    23. M. Nakayama, T. Fujita and H. Nishimura, Superlattices and Microstructures vol. 17, 31 (1995).
    24. M. Vergohl, K. Dettmer and F. R. Kessler, J. Appl. Phys. 81, 1434 (1997).
    25. M. Nakayama, T. Nakanishi, K. Okajima, M. Ando and H. Nishimura, Solid State Commun. 102, 803 (1997).
    26. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
    27. D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).
    28. N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Dimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop”ev, S. V. Zaitsev, N. Yu. Gordeev, Zh. I. Alferov, A. I. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner, U. Gosele, and J. Heydenreich, Phys. Rev. B 54, 8743 (1996).
    29. D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, and P. Basmaji, J. Vac Sci Technol. B 14, 2212 (1996).
    30. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 69, 1226 (1996).
    31. R. Bhattacharya, C. Y. Lee, F. H. Pollak and D. M. Schleich, J. Non-Crystalline Solids, 91, 235 (1987).
    32. O. J. Glembocki B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Appl. Phys. Lett., 46, 970 (1985).
    33. O. J. Glembocki, B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Proc. Photo-Optical Instrum. Eng., 524, 86 (1985).
    34. R. N. Bhattacharya, H. Shen, P. Parayanthal, F. H. Pollak, T. Coutts and Aharoni, Phys. Rev., B 37, 4044 (1988); also Pro. Soc. Photo-Optical Instrum. Engineers, (SPIE, Bellingham, 1987), 794, 81 (1987); Solar Cells, 21, 371 (1987)
    35. R. Glosser and N. Bottka, Proc. Soc. of Photo-Optical Instrum. Engineers, (SPIE, Bellingham, 1987), 794, 88 (1987).
    36. H. Shen, F. H. Pollak and J. W. Woodall, J. Vac. Sci. Tech., B 8, 413 (1990).
    37. P. S. Dutta, K. S. Sangunni, H. L. Bhat and Vikram Kumar, Appl. Phys. Lett. 66, 1986 (1995).
    38. H. Nakanishi and K. Wada, Jpn. J. Appl. Phys. 32, 6206 (1993).
    39. M. Sakai and M. Shinohara, J. Appl. Soc. Japn. Vol. 66, 738 (1997).
    40. M. Sydor, and A. Badakhshan and J. R. Engholm, Appl. Phys. Lett. 59, 677 (1991).
    41. H. K. Lipsanen and V. M. Airaksinen, Appl. Phys. Lett. 63, 2863 (1993).
    42. R. N. Bhattacharya, H. Shen, P. Paraynthal, F. H. Pollak, T. Coutts, and H. Aharoni, Phys. Rev. B37, 4044 (1988).
    43. R. L. Ober, J. Pamulaoati, P. K. Bhattacharya and J. E. Oh, J. Electron Mat. 18, 379 (1989).
    44. G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, Accepted to J. Appl. Phys.1999
    45. J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W. David, and Z. Hang, Appl. Phys. Lett., 64, 3314 (1994).
    46. T. T. Chiang and W. E. Spicer, J. Vac. Sci. Technol., A 7, 724 (1989).
    47. J. Tersoff, Phys. Rev. Lett., 52, 465 (1984).
    48. J. S. Hwang, W. Y. Chou, S. L. Tyan, H. H. Lin and T. L. Lee, Appl. Phys. Lett., 67, 2350 (1995).
    49. J. S. Hwang, W. Y. Chou. M. C. Hung, J. S. Wang and H. H. Lin, J. Appl. Phys. 82, 3888 (1997).
    50. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, and J. M. Woodall, Appl. Phys. Letts., 52, 2058 (1988).
    51. D. E. Aspnes, in M. Balkanski (ed.), Handbook on Semiconductors, Vol. 2, North-Holland, New York, 1980, p. 109; also Surf. Sci., 37, 418 (1973).
    52. D. E. Aspnes and A. A. Studna, Phys. Rev., B7, 4605 (1973).
    53. H. R. Philipp and H. Ehrenreich, Phys. Rev., 129, 1550 (1963).
    54. D. D. Sell and S. E. Stokowski, 1970, Proc. 10th Int. Conf. on the Physics of Semiconductors, Cambridge, Mass., eds. Keller et al. (USACE Div. Techn. Inform. CONF-70081, Springfield,) p. 417.
    55. O. J. Glembocki, N. Bottka and J. E. Furneaux, J. Appl. Phys. 57, 432 (1985).
    56. A. J. Shields, P. C. Klipstein, M. S. Skolnick, G. W. Smith and C. R. Whitehouse, Phys. Rev. B 42, 5879 (1990).
    57. N. Jaffrezic-Renault, H. Perrot and C. Nguyen van Huong, Electrochimica Acta 34, 1739 (1989).
    58. P. C. Klipstein and N. Apsley, J. Phys. C: Solid State Phys. 19 6461 (1986).
    59. C. Vazquez-López, H. Navarro, Raúl Aceves, M. C. Vargas and C. A. Menezes, J. Appl. Phys. 58, 2066 (1985).
    60. P. C. Klipstein, P. R. Tapster, N. Apsley, D. A. Anderson, M. S. Skolnick, T. M. Kerr and K. Woodbridge, J. Phys. C: Solid State Phys. 19, 857 (1986).
    61. J. M. Wrobel, U. K. Reddy, L. C. Bassett, J. L. Aubel and S. Sundaram, J. Appl. Phys. 60, 368 (1986).
    62. A. Dodabalapur, V. P. Kesan, D. P. Neikirk, B. G. Streetman, M. H. Herman and I. D. Ward, J. Electron. Mater. 19, 265 (1990).
    63. T. Nishino, J. Cryst. Growth 98, 44 (1989).
    64. Y. S. Huang, S. S. Lin, J. S. Sheu, W. M. Shen and F. H. Pollak, Solid State Commun. 76, 1093 (1990).
    65. I. J. Fritz, T. M. Brennan and D. S. Ginley, Solid State Commun. 75, 289 (1990).
    66. S. Y. Chung, D. Y. Lin, Y. S. Huang and K. K. Tiong, Semicond. Sci. Technol. 11, 1850 (1996).
    67. M. Certier, H. Erguig, M. Soltani and T. Sauder, Physica Status Solidi B 168, 361 (1991).
    68. Y. C. Yin, D. Yan, F. H. Pollak, M. S. Hybertsen, J. M. Vandenberg and J. C. Bean, Phys. Rev. B 44, 5955 (1991).
    69. J. Calatayud, J. Allegre, H. Mathieu, N. Magnea and H. Mariette, Phys. Rev. B 47, 9684 (1993).
    70. T. P. Pearsall, Phys. Rev. B 48, 2795 (1993).
    71. Y. C. Yin, D. Yan, F. H. Pollak, M. S. Hybertsen, J. M. Vandenberg, and J. C. Bean, Surf. Sci. 267, 99 (1992).
    72. C. Armelles and V. R. Velasco, Phys. Rev. B 54, 16428 (1997).
    73. H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. Part 1 35, 5946 (1996).
    74. A. S. Lee and P. M. Norris, Rev. Sci. Instrum. 68, 1307 (1997).
    75. V. Bellani, G. Guizzetti, L. Nosenzo, E. Reguzzoni, A. Bosacchi and S. Franchi, Superlattices and Microstructures 13, 147 (1993).
    76. T. Miyazaki and S. Adachi, Jpn. J. Appl. Phys. Part 1 33, 5817 (1994).
    77. S. Ozaki and S. Adachi, J. Appl. Phys. 78, 3380 (1995).
    78. O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston (eds), Semiconductors and Semimetals, Vol. 36, Academic Press, New York, 1992 pp221-292.
    79. A. K. Berry, D. K. Gaskill, G. T. Stauf and Bottka, Appl. Phys. Lett. 58, 2824 (1991).
    80. J. Nukeaw, J. Yanagisawa, N. Matsubara, Y. Fujiwara and Y. Takeda, Appl. Phys. Lett. 70, 84 (1997).
    81. J. Misiewicz, P. Markiewicz, J. Rebisz, Z. Gumienny, M. Panek, B. Sciana and M. Tlaczala, Phys. Stat. Sol. (b) 183, K43 (1994).
    82. S. L. Tyan, Y. C. Wang and J. S. Hwang, Appl. Phys. Lett. 68, 1 (1996).
    83. Y. C. Wang, W. Y. Chou, W. C. Hwang, and J. S. Hwang, Solid State commu. 104, 717 (1997).
    84. H. Shen, F. H. Pollak, and J. M. Woodall, J. Vac. Sci. Technol., B 7, 804 (1989).
    85. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, T. F. Kuech, J. M. Woodall, and R. N. Sacks, Prodeedings of the 9th International Conference on the Physics of Semiconductors, Warsaw, 1989, ed. by W. Zawadzki (institute of Physics, Polish Academy of Science, Warsaw, 1989) p.1087.
    86. Y. Yin, H. M. Chen, F. H. Pollak, Y. Chen, P. A. Montano, J. M. Woodall, P. D. Kirncher, and D. Pettit, Proceedings of the 20th International Conference on the Physics of Semiconductors, Greece, 1990.
    87. M. Kallergi, B. Roughani, J. Aubel, S. Sundaram, T. Chu, S. Chu and R. Green, J. Vac. Sci. Technol. A 8, 1907 (1990).
    88. J. S. Hwang, Y. C. Wang, W. Y. Chou, and S. L. Tyan, J. Appl. Phys. 83, 2857 (1998).
    89. C.W. Tu, J. Phys.:Condens. Matter 13 (2001) 7169-7182
    90. N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081 (1992).
    91. D. E. Aspnes, in Handbook on semiconductors, edited by T. S. Moss (North-Holland, New york, 1980), Vol. 2, P. 109.
    92. D. E. Aspnes, Phys. Rev. B 10, 4228 (1974).
    93. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065 (1992).
    94. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth 93, 481 (1988).
    95.J.S. Hwang,,K.L. Lin,H.C. Lin,S.H. Hsu,K.C. Chen,Y.T. Lu Appl. Phys. Lett. 86 061103 (2005)
    96.K.Ozasa,M. Yuri,S. Tanaka,H. Matsunami,J.Appl.Phys.68(1),1July (1990)
    97.C.P. Kuo,S.K. Vong,R.M. Cohen,G.B. Stringfeillow,J.Appl.phys.57(12), 15 June (1985)
    98.S. Sanorpim,F. Nakajima,R. Katayama,N. Nakadan,T. Kimura,K. Onabe,phys.stat.sol.(c)0, No. 7, 2773-2777(2003)
    99.“Physics of semiconductors and their heterostructures”,Jaspait Singh, P219~210
    100.S.H..wei,A. Zunger,Phys. Review B volume49,number20(1993)
    101.H.P. Hsu,Y.S. Huang,C.H. Wu,Y.K. Su,F.S. Juang,Y.G. Hong,C.W. Tu,J.Phys.:Condens. Matter 16 S3245-S3256(2004)
    102.T. Mishima,M. Miura,S. Ozaki,S. Adachi,Journal of Applied Physics,Volume91,number8(2002)
    103.“Fundamentals of Semiconductors” Peter Y. Yu,Manuel Cardona p320
    104.S.H. Hsu,Y.K. Su,S.J. Chang,K.I. Lin,W.H. Lan,P.S. Wu,C.H. Wu,Journal Of Crystal Growth, CRYS:13414(2004)
    105.G.Yu. Rudko,I.A. Buyanova,W.M. Chen,Applied Physics Letters, Volume81,number21(2002)
    106.Y.G. Hong,R. Andre,C.W. Tu, J. Vac. Sci. Technol.B, 19 1413(2001)
    107.I.A. Buyanova,W.M. Chen,C.W. Tu,Solid-State Electronics , 47467-475(2003)
    108.S. Shirakata,Appled Physics Letters, Volume 80 Number 12(2002)
    109.Y. Zhang,B. Fluegel,A. Mascarenhas,Physical Review B, Volume 62, Number 7(2000)
    110.J. Wagner,A. Ramakirishnan,D. Behr,M. Maier,N. Herres,M. Kunzer,H. Obloh,K. H. Bachem,MRS Internet J. Nitride Semicond. Res. 4S1, G2.8(1999)
    111.A. Ait-Quali,J. L. Brebner,J. Appl. Phys., 86, 12(1999)
    112. A. Ait-Quali,A. Chennouf,R. y.-F. Yip,J.L. Brebner,R. Leonelli,R. A. Masut,J. Appl. Phys., 84,10 (1998)
    113.P. G. Eliseev,J. Appl. Phys., 93,9(2003)
    114.J.A. Kash,Phys. Rev. Lett., 71,8(1993)
    115.C. Delalande,M.H. Meynadier,M. Voos,Phys. Rev.B, 31, 4(1985)
    116. G. Bastard,C. Delalande,Phys. Rev.B, 29, 12(1984)
    117.M.S. Skolnick,P.R. Tapster,S.J. Bass,N. Apsley,A.D. Pitt,N.G. Chew,A.G. Cullis ,S.P. Aldred,C.A. Warwick,Appl.Phys.Lett., 48, 21(1986)
    118. “Fundamentals of Semiconductors” Peter Y. Yu,Manuel Cardona p333~334
    119. “Fundamentals of Semiconductors” Peter Y. Yu,Manuel Cardona p337~344

    下載圖示 校內:2007-07-14公開
    校外:2007-07-14公開
    QR CODE