簡易檢索 / 詳目顯示

研究生: 林育申
Lin, Yu-Shen
論文名稱: 發展微拉伸量測系統以測試細胞之生物力學特性
Development of Micro-Tensile Testing System for Measuring Biomechanical Properties of Cells
指導教授: 朱銘祥
Ju, Ming-Shaung
林宙晴
Lin, Chou-Ching K.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 93
中文關鍵詞: 拉伸試驗生物力學楊氏模數有限元素法C2C12肌纖維母細胞PC-12類神經細胞
外文關鍵詞: Tensile test, Biomechanics, Young’s modulus, Finite element method, C2C12 myoblast cells, PC-12 neuron-like cells
相關次數: 點閱:109下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微拉伸量測系統是研究生物細胞和組織的力學特性重要工具,本研究的目的在於建構微拉伸量測系統和量測方法,以量測C2C12肌纖維母細胞和PC-12類神經細胞受到拉伸時的被動機械性質。藉由有限元素軟體Abaqus建構細胞模型,將細胞假設為線性彈性材料,模擬細胞受拉伸時的狀態,以獲得細胞之楊氏模數,且瞭解細胞受拉伸時內部的應力分佈。
    由結果顯示,兩種細胞實驗量測和有限元素模擬出的楊氏模數之數量級皆與文獻相符,實驗方面C2C12細胞視楊氏模數約為4.98kPa,PC-12細胞視楊氏模數約為1.27kPa,有限元素模擬單層結構方面C2C12楊氏模數為12.19kPa,PC-12楊氏模數為1.86kPa。有限元素模擬雙層結構方面C2C12楊氏模數核區為13.50kPa,細胞骨架區為11.03kPa,PC-12楊氏模數核區為2.12kPa,細胞骨架區為1.54kPa。成功發展微拉伸量測系統量測細胞視楊氏模數,及有限元素模擬獲得細胞楊氏模數,且能表現出活體細胞的被動機械特性。

    Micro-tensile testing system is important for studying the biomechanics of cells and biological tissues. The goal of this thesis is to construct a micro-tensile testing system and measurement method. The built system is employed to measure the passive mechanical properties of C2C12 myoblast cells and PC-12 neuron-like cells. By using finite element method, numerical models of the cells are built by assuming the cell material to be isotropic and linearly elastic. Young’s moduli of the cells are estimated by simulating stretching of the cells with the FEM models to explore intracellular stress distribution.
    The results show that orders of the magnitude of Young’s moduli of these two cells obtained from experiments and FEM are consistent with those of the literature. The apparent Young’s moduli of C2C12 cells and PC-12 cells obtained from the experiments are 4.98Pa and 1.27kPa respectively. The Young’s moduli of C2C12 cells and PC-12 cells obtained from single-layer FEM simulations are 12.19kPa and 1.86kPa respectively. The nucleus and cytoskeleton Young’s moduli of C2C12 cells and PC-12 cells obtained from double-layer FEM simulations are 13.50kPa,11.03kPa and 2.12kPa,1.54kPa respectively.
    In conclusion, methods for measuring the apparent Young’s modulus of cell by using a micro-tensile testing system and linear elastic finite element method of cell are developed. The methods can be utilized to characterize the passive biomechanical properties of living cells.

    摘要…………………………………………………………………………………………...Ⅰ Abstract..……………………………………………………………………………………...Ⅱ 誌謝.………………………………………………………………………………..………... Ⅲ 目錄…………………………………………………………………………………………...Ⅳ 圖目錄………………………………………………………………………………………...Ⅵ 表目錄…………………………………………………………………………………..….... Ⅸ 符號表………………………………………………………………………………………...Ⅹ 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 4 1.3 研究動機與目的 8 1.4 本文架構 9 第二章 方法及實驗 10 2.1 細胞培養 10 2.1.1 C2C12肌纖維母細胞培養 10 2.1.2 PC-12類神經細胞培養 11 2.2 微吸管製作及校正 13 2.2.1 使用儀器 13 2.2.2 校正方法 14 2.3 微拉伸實驗 16 2.3.1 實驗前之細胞前處理 16 2.3.2 硬體架構 17 2.3.3 實驗方法及模型 19 2.4 影像處理 21 2.4.1 色彩轉換 22 2.4.2 影像負片轉換及影像對比提升 23 2.4.3 數據量測 26 2.5 細胞免疫螢光染色及細胞分層 27 2.5.1 細胞免疫螢光染色 27 2.5.2 細胞分層 29 2.6 有限元素建模與模擬 30 2.6.1 有限元素軟體簡介 30 2.6.2 細胞3D幾何模型 32 2.6.3 材料參數及邊界負載條件 34 2.6.4 網格及元素 37 第三章 結果 38 3.1 微拉伸量測實驗 38 3.1.1 C2C12 拉伸結果 41 3.1.2 PC-12拉伸結果 47 3.2 細胞分層 52 3.3 有限元素模擬 58 3.3.1 模擬結果 58 3.3.2 FEM收斂性分析 71 3.3.3 模擬所得楊氏模數 72 第四章 討論 76 4.1 細胞剛性和微吸管剛性探討 76 4.2 細胞剛性及視楊氏模數和直徑關係探討 78 4.3 細胞楊氏模數比較 81 4.4 細胞分層方法探討 84 4.5 雙層細胞FEM模擬應力不連續現象 85 4.6 以對稱性元素模擬 87 第五章 結論與建議 89 5.1 結論 89 5.2 建議 90 參考文獻 91

    [1] D. Yaffe, O. Saxel, 「Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle,」 Nature vol. 270, 725-727, 1977.
    [2] L.A. Greene, A.S. Tischler, 「Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor,」 Proc Natl. Acad. Sci. USA vol.73, 2424-2428, 1976.
    [3] J.M. Mitchison, M.M. Swann, 「The mechanical properties of the cell surface I. The cell elastimeter,」 Journal of Experimental biology vol. 31, 443-460, 1954.
    [4] R.P. Rand, A.C. Burton, 「Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure,」 Biophysical Journal vol. 4, 115-135, 1964.
    [5] A. Ashkin, 「Acceleration and Trapping of Particles by Radiation Pressure,」 Phycial Review Letters vol. 24, 156-159, 1970.
    [6] A. Ashkin, 「Applications of laser radiation pressure,」 Science vol. 210, 1081–1088, 1980.
    [7] N.O. Petersen, W.B. McConnaughey, E.L. Elson, 「Dependence of locally measured cellular deformability on position on the cell, temperature and cytochalasin,」 B. Proc Natl Acad Sci USA vol. 79, 5327–5331, 1982.
    [8] G. Binnig, CF Quate, C. Gerber, 「Atomic force microscope,」 Phys. Rev. Lett. vol. 56, 930-933, 1986.
    [9] O. Thoumine, A. Ott, 「Time scale dependent viscoelastic andcontractile regimes in fibroblasts probed by microplate manipulation,」 Journal of Cell Science vol. 110, 2109-2116, 1997.
    [10] N. Wang, 「Mechanical interactions among cytoskeletal filaments,」 Hypertension vol. 32, 162-165, 1998.
    [11] C. Haber, D. Wirtz, 「Magnetic tweezers for DNA micromanipulation,」 Rev. Sci. Instrum. vol. 71, 4561-4570, 2000.
    [12] J.J. Glerum, R. Van Mastrigt, 「Mechanical properties of mammalian single smooth muscle cells. I. A low cost large range microforce transducer,」 Journal of Muscle Research Cell Motil. vol. 11, 331-337, 1990.
    [13] J.J. Glerum, R. Van Mastrigt, 「Mechanical properties of mammalian single smooth muscle cells. II. Evaluation of a modified technique for attachment of cells to the measurement apparatus,」 Journal of Muscle Research Cell Motil. vol. 11, 338-443, 1990.
    [14] J.J. Glerum, R. Van Mastrigt, A.J. Van Koeveringe, 「Mechanical properties of mammalian single smooth muscle cells. III. Passive properties of pig detrusor and human a terme uterus cells,」 Journal of Muscle Research Cell Motil. vol. 11, 453-462, 1990.
    [15] H. Miyazaki, K. Hayashi, 「Tensile tests of collagen fibers obtained from the rabbit patellar tendon,」 Biomed. Microdevices vol. 2, 151-157, 1999.
    [16] H. Miyazaki, Y. Hasegawa, K. Hayashi, 「A newly designed tensile tester for cells and its application to fibroblasts,」 J. Biomech. vol. 33, 97-104, 2000.
    [17] S. Deguchi, T. Ohashi, M. Sato, 「Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells,」 J. Biomech. vol. 39, 2603-2610, 2006.
    [18] K. Nagayama, Y. Nagano, M. Sato, T. Matsumoto, 「Effect of actin filament distribution on tensile properties of smooth muscle cells obtained from rat thoracic aortas,」 J Biomech. vol. 39, 293-301, 2006.
    [19] K. Nagayama, S. Yanagihara, T. Matsumoto, 「A novel micro tensile tester with feed-back control for viscoelastic analysis of single isolated smooth muscle cells,」 Med Eng Phys vol. 29, 620-628, 2007.
    [20] A.M. Collinsworth, S. Zhang, W.E. Kraus, G.A. Truskey, 「Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation,」 Am J Physiol Cell Physiol vol. 283, C1219-C1227, 2002.
    [21] E.A.G. Peeters, C.W.J. Oomens, C.V.C. Bouten, D.L. Bader, F.P.T. Baaijens, 「Mechanical and failure properties of single attached cells under compression,」 J. Biomech. vol. 38, 1685-1693, 2005.
    [22] F. Sbrana, C. Sassoli, E. Meacci, D. Nosi, R. Squecco,F. Paternostro, B. Tiribilli, S. Zecchi-Orlandini, F. Francini, L. Formigli, 「Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts,」 Am. J. Physiol. Cell Physiol. vol. 295, C160-C172, 2008.
    [23] 張嘉峰,「應用原子力顯微術於PC-12類神經細胞之生物力學研究,」 國立成功大學微機電系統工程研究所碩士論文, 2006.
    [24] 馮俊雄,「應用原子力顯微鏡探討於PC-12類神經細胞於微小基底表面之黏彈力學性質,」 國立成功大學機械工程研究所碩士論文, 2007.
    [25] 藍宏銘,「原子力顯微術於PC-12類神經細胞軸突再生研究,」 國立成功大學機械工程研究所碩士論文, 2008.
    [26] 劉孟璋, 「以原子力顯微鏡量測生命材料機械性質之研究-活體細胞的驗證實例,」 國立成功大學機械工程研究所碩士論文, 2009.
    [27] M. Dao, C.T. Lim, S. Suresh, 「Mechanics of the human red blood cell deformed by optical tweezers,」 J. Mech. Phys. Solids vol. 51, 2259-2280, 2003.
    [28] G.U. Unnikrishnan, V.U. Unnikrishnan, J.N. Reddy, 「Constitutive material modeling of cell: A micromechanics approach,」 J Biomed Eng vol. 129, 315-323, 2007.
    [29] E. Gladilin, A. Micoulet, B. Hosseini, K. Rohr, J. Spatz, R. Eils, 「3D finite element analysis of uniaxial cell stretching: from image to insight,」 Phys. Biol. vol. 4, 104-113, 2007.
    [30] Y. Ueki, N. Sakamoto, M. Sato, 「Direct measurement of shear strain in adherent vascular endothelial cells exposed to fluid shear stress,」 Biochem. Biophys. Res. Commun. vol. 394, 94-99, 2010.
    [31] R.C. Gonzalez, R.E. Woods, S.L. Eddins 原著, 繆紹綱 譯, 數位影像處理-運用MATLAB, 東華書局.
    [32] ABAQUS User’s Manual, 2008, Version 6.8, ABAQUS Inc.
    [33] Abaqus 實務入門引導, 愛發股份有限公司編著, 全華.
    [34] M. Wong, M. Ponticiello, V. Kovanen, 「Volumetric changes of articular cartilage during stress relaxation in unconfined compression,」 J Biomech. vol. 33, 1049-1054, 2000.

    下載圖示 校內:2015-08-05公開
    校外:2018-01-01公開
    QR CODE