研究生: |
陳怡文 Chen, Yi-wen |
---|---|
論文名稱: |
製備高選擇性肌酸激酶分子模版及其應用於肌肉發炎檢測 Preparing high Selectivity Creatine Kinase-Imprinted Polymer and Its Application to Muscle Inflammation Detection |
指導教授: |
周澤川
Chou, Tse-chuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 169 |
中文關鍵詞: | 酵素連結免疫吸附分析 、肌酸激酶 、分子模版 、高選擇性 |
外文關鍵詞: | Creatine kinase, high selectivity, molecularly imprinting polymer, ELISA |
相關次數: | 點閱:60 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肌酸激酶 (Creatine kinase) 是一種酶類蛋白質,專門催化肌酸磷酸變為肌酸產生能量供給肌肉利用的一種酵素。肌酸激酶種類共有三型,分別為:肌肉型、心肌型、腦型。其疾病指標有心肌梗塞、心肌炎、肌肉發炎等。一般在臨床檢驗上,常以免疫分析法來檢測,但在臨床上應用之免疫分析方法,不但步驟繁雜,且因自然界的抗原、抗體不易取得,所以分析成本昂貴。而分子模版具有如天然抗體的高選擇性,穩定性佳、製備簡單成本便宜之諸多優點,若利用分子模版取代天然抗體,則可解決免疫分析時所需昂貴或稀有之天然抗體的缺點。
本研究應用微接觸方法製備肌酸激酶分子模版,此方法的優點在於不需考慮目標分子對於高分子單體或其他溶劑的溶解度問題。在此研究中,主要是應用酵素連結免疫吸附分析法(ELISA)搭配冷螢光儀或等溫滴定為卡計( ITC )及紫外光光譜儀,找出最適化配方。在此研究中決定以Methyl acrylic acid ( MAA )為功能性單體,Poly(ethylene glycol) dimethacrylate ( PEG400DMA , Mn = 550 )為交聯劑,單體與交聯劑體積比例為5:95,在此條件下紫外光聚合10分鐘,利用濃度為0.01克胰蛋白酶 / 100 毫升磷酸緩衝溶液在37℃清洗3小時再以1% 十二烷基磺酸鈉+ 0.4 %氫氧化鈉 / 100毫升去離子水 80℃清洗30分鐘,經移除目標分子與再吸附肌酸激酶分子後,測得肌酸激酶分子模版吸附量為2.5×10-9M,其膜印係數 ()高達22.5。利用不同肌酸激酶分子濃度再吸附之過程,取得飽和吸附曲線,並繪出Scatchard Plot圖,其專一性吸附區解離常數Kd1為2.56×10-12 M、辨識性孔洞n1*為1.97×10-10mole/cm2;而非專一性吸附區解離常數Kd2為3.27×10-9 M、非辨識性孔洞n2*為2.32×10-10mole/cm2。
利用肌紅蛋白、人類血清白蛋白質與G型球蛋白質在單成分與雙成分的吸附,對肌酸激酶分子模版皆有很高的選擇性,其雙成分競爭性吸附選擇性分別為85%、96%、97%。在真實樣品中,利用未稀釋的血清加入肌酸激酶分子使濃度為380U/L,真實吸附量達到預測吸附量的98%。此外亦研究針對失活肌酸激酶分子吸附肌酸激酶分子模版,其膜印係數為2.7與未失活肌酸激酶的膜印係數相差八倍。
本研究不但成功的製備出肌酸激酶分子模版,也證明其應用於感測真實樣品的可行性。此外在模版辨識性上,肌酸激酶分子模版對於肌紅蛋白、人類血清白蛋白質、G型球蛋白與失活肌酸激酶皆具有很高的選擇性。
Creatine kinase (CK) is an enzyme expressed by various tissue types. It catalyses the conversion of creatine to phosphocreatine, consuming adenosine triphosphate (ATP) and generating adenosine diphosphate (ADP). There are three different isoenzymes: CK-MM, CK-BB and CK-MB. CK is assayed in blood tests as a marker of myocardial infarction, myocarditis,and muscule inflammation. In general, CK can be detected by immunoassay in clinical assays. However, the method has some disadvantages, it is complicated and e antibodies are expensive. The advantage of molecularly imprinted polymers are in terms of their high selectivity, better stability, low cost and ease of preparation when MIPs are compared to natural antibodies. If we use the MIPs to replace the natural antibodies, we can solve the disadvantage of the expensive or rare antibody in immunoassay analysis.
In this study, we used the micro contact method to prepare a CK-imprinted polymer. The benefit of the presented method is that the template can be dissolved in the polymer solutions. We Used the enzyme-linked immunosorbent assay integrated the chemiluminesence, UV spectrometer and ITC to find the best conditions. In this study, we decided to use Methyl acrylic acid ( MAA ) as a functional monomer and Poly (ethylene glycol) dimethacrylate (PEG400DMA, Mn=550) as a cross-linker. The best volume ratio of MAA to PEG400DMA is 5 : 95. After polymerization (10 minutes), an extraction solvent comprising 0.01g trypsin / 100 ml Phosphate buffer used at 37℃ for 3 hr and 1 wt. % Sodium dodecyl sulfate and 0.4 wt. % NaOH used at 80 ℃ for 30 min. After the extraction and rebinding steps, the CK-MIP appeared to have the highest absorption quantity, 2.5×10-11mole. The imprinting factor is up to 22.5. Using the different concentrations of the CK solution to rebind on the CK-MIP, can get the saturation curve of CK-MIP and Scatchard plot. For the specific binding phase, the Kd1 is 2.56×10-12 M and n1* is 1.97×10-10 mole / cm2. For the non-specific binding phase, the Kd2 is 3.27×10-9 M and n2* is 2.32×10-10 mole / cm2.
Using myoglobin, HSA and IgG in non-competitive or competitive absorption to bind on the CK-MIP, the selectivity was shown to be high for CK-MIP. For competitive absorption, the selectivity is 85%, 96% and 97% for Myoglobin, HSA and IgG. Using real sample, i.e. the serum and adding a little CK let the concentration is 380 U/L. The real binding quantity is able to be predicted from the saturation curve. Also we used the denatured CK to bind on the CK-MIP, and showed that nature CK has 8 times the imprinting factor of the denatured CK.
This research has resulted in the successful imprinting of CK and proved the possibility of sensing real samples. For the recognition of myoglobin, HSA, IgG and denature CK, CK-MIP has the high selectivity.
[1] S.A. Shain, "Creatine kinase and lactate dehydrogenase: stability of isoenzymes and their activity in stored human plasma and prostatic tissue extracts and effect of sample dilution", Clin. Chem, vol. 29, pp. 832–835, 1983.
[2] R.W. Kwiatkowski, C.W. Schweinfest, R.P. Dottin, "Molecular cloning and the complete nucleotide sequence of the creatine kinase-M cDNA from chicken", Nucleic. Acids Res., vol. 12, pp. 6952–6934, 1984.
[3] L. Pickering , H. Pang,K. Biemann, "Two tissue-specific isozymes of creatine kinase have closely matched amino acid sequences", Proc. Natl. Acad. Sci. USA, vol. 82, pp. 2310–2314, 1985.
[4] S.M. Muhlebach, M. Gross, T. Wirz, "Sequence Homology and Structure Predictions of the Creatine-Kinase Isoenzymes", Mol.Cell. Biochem., vol. 133, pp. 245–262, 1994.
[5] P.A. Benfield, "Isolation and sequence analysis of cDNA clones coding for rat skeletal muscle creatine kinase", J. Biol. Chem., vol. 259, pp. 14979–14984, 1984
[6] M.W. Seraydrarian, B.C. Abbot, "The role of the creatine phosphokinase system in muscle", J. Mol. Cell. Cardiol. , vol. 8, pp. 741–746, 1976.
[7] B.E. Sobel, J. Markham, R. Roberts, "Factors influencing enzymatic estimates of infarct size", Am. J. Cardiol., vol. 39, pp. 130–132, 1977.
[8] B.E. Sobel, "Applications and limitations of estimation of infarct size from serial changes in plasma creatine phosphokinase activity", Acta Med. Scand. Suppl., vol. 587, pp. 151–167, 1976.
[9] A. Kouttinen, "Purification of human and canine creatine kinase isozymes", Acta Med. Scand. Suppl., vol. 623, pp. 115–117, 1987.
[10] S. Hershenson, N. Helmers, P. Desmueles, R. Stroud, " Purification and Crystallization of Creatine Kinase from Rabbit Skeletal Muscle", The Journal of Biological Chemistry, vol. 261, pp. 3732–3736, 1986.
[11] Y.Q. Shen, L. Tang, H.M. Zhou, Z.J.Lin, "Structure of human muscle creatine kinase", Acta Crystallogr D-biol cryst, vol. 57, pp. 1196–1200, 2001.
[12] G.F. Bickerstaff, C. Paterson, N.C. Price, "The refolding of denatured rabbit muscle creatine kinase. Biochim", Biophys. Acta, vol. 621, pp. 305–314, 1980
[13] L.X Hou, H.M. Zhou, Q.Z. Yao, C.L. Tsou, "A comparative study of renaturation and reactivation kinetics of the guanidine denatured creatine kinase", Acta Biochim. Biophys. Sin., vol. 15, pp. 393–397, 1983
[14] S.H. Grossman, "Fluorescence analysis of denaturation and reassembly of dansylated creatine kinase", Biochim. Biophys. Acta, vol. 785, pp. 61–67, 1984.
[15] H.M. Zhou, C.L. Tsou, "Comparison of activity and conformation changes during refolding of urea-denatured creatine kinase", Biochim. Biophys. Acta, vol. 869, pp. 69–74, 1986.
[16] Z.F. Wang, Y. Yang, H.M. Zhou, "Conformational changes of active sites during refolding of urea-denatured creatine kinase", Biochimie , vol. 77, pp. 953–956, 1995.
[17] Y. Yang, Y.D. Park, T.W. Yu, H.M. Zhou, "Reactivation and refolding of a partially folded creatine kinase modified by 5,5-Dithio-bis-(2-nitroben-
-zoicacid)", Biochem. Biophys. Res. Commun., vol. 259, pp. 450–454, 1999.
[18] T. Webb, P.J. Jackson, G.E. Morris, "Protease digestion studies of an equilibrium intermediate in the unfolding of creatine kinase", Biochem. J., vol. 321, pp. 83–88, 1997.
[19] J.M. Zhou, Y.X. Fan, H. Kihara, K. Kimura,Y. Amemiya, "Unfolding of dimeric creatine kinase in urea and guanidine hydrochloride as measured using small angle X-ray scattering with synchrotron radiation", FEBS Lett., vol. 415, pp. 183–185, 1997.
[20] Q.Z. Yao ,H.M. Zhou,L.X. Hou , "A comparison of denaturation rates of creatine kinase in guanidine solution", Sci. Sin. Ser. B. (Engl. Ed.), vol. 25: 1296–1302, 1982.
[21] Z.F. Wang, M.Q. Huang, X.M. Zou, "Unfolding , conformational change of active site and inactivation of creatine kinase in SDS solutions", Biochim. Biophys. Acta, vol. 1251, pp. 109–114, 1995
[22] H.M. Zhou,X.H. Zhang,Y. Yin, "Conformational changes at the active site of creatine kinase at low concentrations of guanidinium chloride", Biochem. J., vol. 291, pp. 103–107, 1993.
[23] 台北榮民總醫院病理檢驗部, "http://0rz.tw/354s1", 2008/07/20
[24] 福島醫檢資訊網, "http://www.supermt.com.tw/MTindex-1.htm",, 2008/07/20
[25] 台大醫院SARS專案小組, "嚴重及性呼吸症候群感染防治手冊" , 2003
[26] 林和文、高鎮松、陳鼎盛等人, "A study on relationship between the serum creatine phosphokinase and clinical type in schizophrenia", 四川精神衛生, vol. 16, pp. 19–21, 2003.
[27] 陳曉、詹眉, "高尿酸血症患者監控肌酸激酶的臨床應用探討", 中華醫學實踐雜誌, vol. 6, no. 8, 2007.
[28] 韓海英, "新生兒窒息肌酸激酶改變與臨床分析", 國際醫藥衛生導報, no. 5, 2004.
[29] J.S. Chang, G.H. Chen, "Creatine kinase as a prognostic parameter in acute pancreatitis", Chinese J. Gastroenterol, vol. 15, pp. 86–93, 1988.
[30] 工業技術研究院醫療器材科技中心, "http://0rz.tw/784qT", 2008/07/20
[31] Cardiac STATUSTM, "http://www.pointofcaretesting.net/card2.htm", 2008/07/20
[32] Response Biomedical Corporation, "http://0rz.tw/364pU ", 2008/07/20
[33] Society for molecular imprinting, " http://www.molecular-imprinting.org
/story/MIT.htm ", 2008/07/20
[34] S. Mudd, "A hypothetical mechanism of antibody production", Journal of Immunology, vol. 23, pp. 423, 1932.
[35] Pauling, L, D. Campbell, " The manufacture of antibodies in vitro", J. Exper Med, vol. 76, pp. 200, 1942.
[36] G. Wulff, "Molecular imprinting in cross-linked materials with the aid of molecular templates - a way towards artificial antibodies," Angewandte Chemie (International Edition in English), vol. 37, pp. 1812–1832, 1995.
[37] L. Andersson, G. Sellergren, K. Mosbach, "Imprinting of amino acid derivatives in macroporous polymers." Tetrahedron Lett., vol. 25, pp. 521, 1984.
[38] H.W. Cameron Alexander, "Molecular imprinting science and technology : a survey of the literature for the year up to and including 2003." Journal of Molecular Recognition, vol. 16, pp. 106–180, 2006.
[39] V. Tougu, T. Kesvatera, "Comparison of salt effects on the reactions of acetylcholinesterase with cationic and anionic inhibitor", Biochimica et Biophysica Acta / Protein Structure and Molecular Enzymology, vol. 1544, pp. 189–195, 2001.
[40] N.A.P. Ebru Oral, "Hydrophilic molecularly imprinted Poly- (hydroxy
-ethyl-methacrylate) polymer", Journal of Biomedical Materials Research Part A, vol. 78A, pp. 205–210, 2006.
[41] R. Arshady, K. Mosbach, "Synthesis of Substrate-Selective Polymer by Host-Guest Polymerization", Macromol. Chem. , vol. 182, pp. 687–692, 1981.
[42] G. Vlatakis, L. I. Andersson, R. Muller, K. Mosbach, "Drug Assay Using Antibody Mimics Made by Molecular Imprinting", Nature, vol. 361, pp. 645–647, 1993.
[43] J. Janata, "Principles of chemical sensors", Plenum press, NY, 1991
[44] B. Albert, Molecular Biology of The Cell. NEW YORK: Garland Science , 2005.
[45] M. Komiyama, T.Takeuchi, T. Mukawa, H. Asanuma. "Molecular Imprinting From Fundamentals to Applications".
[46] D. Kriz, K. Mosbach, "Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer", Analytica Chimica Acta, vol. 300, pp. 71–75, 1995.
[47] H.Y. Wang, T. Kobayashi, N. Fujii, "Molecular Imprinting of Theophylline in Acrylonitrile-acrylic acid Copolymer membrane", Chemistry Letters, pp. 927–928, 1995.
[48] T. Kobayashi, H.Y. Wang, N. Fujii, "Molecular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique", Langmuir, vol. 12, pp. 4850–4856, 1996.
[49] H.Y. Wang, T. Kobayashi, N. Fujii, "Molecular imprint membranes prepared by the phase inversion precipitation technique", Langmuir, vol. 12, pp. 4850–4856, 1996.
[50] S.A. Piletsky, E.V. Piletskaya, A.V. Elgersma, K. Yano, I. Karube, "Atrazine sensing by molecularly imprinted membranes", Biosensors & Bioelectronics, vol. 10, pp. 959–964, 1995.
[51] M. Siemann, L. I. Andersson, K. Mosbach, "Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers", Journal of Agricultural and Food Chemistry, vol. 44, pp. 141–145, 1996.
[52] K. Sreenivasan, "Imparting cholesterol recognition sites in radiation polymerised Poly(2-hydroxyethyl methacrylate) by molecular imprinting", Polymer International, vol. 42, pp. 169–172, 1997.
[53] K. Sreenivasan, "Effect of the type of monomers of molecularly imprinted polymers on the interaction with steroids", Journal of Applied Polymer Science, vol. 68, pp. 1863–1866, 1998.
[54] P.S. Reddy, T. Kobayashi, N. Fujii, "Molecular imprinting in hydrogen bonding networks of polyamide nylon for recognition of amino acids", Chemistry Letters, pp. 293–294, 1999.
[55] C.Y. Lin, D.F. Tai, T.Z. Wu, "Discrimination of peptides by using a molecularly imprinted piezoelectric biosensor", Chemistry-a European Journal, vol. 9, pp. 5107–5110, 2003.
[56] J.T. Huang, J. Zhang, J.Q. Zhang, S.H. Zheng, "Template imprinting amphoteric polymer for the recognition of proteins", Journal of Applied Polymer Science, vol. 95, pp. 358–361, 2005.
[57] O. Hayden, R. Bindeus, C. Haderspock, K.J. Mann, B. Wirl, F.L. Dickert, "Mass-sensitive detection of cells, viruses and enzymes with artificial receptors", Sensors and Actuators B-Chemical, vol. 91, pp. 316–319, 2003.
[58] F.L. Dickert, O. Hayden, "Bioimprinting of polymers and sol-gel phases. Selective detection of yeasts with imprinted polymers", Analytical Chemistry, vol. 74, pp. 1302–1306, 2002.
[59] K. Haupt, "Molecularly imprinted polymers: The next generation", Analytical Chemistry, vol. 75, pp. 376a–383a, 2003.
[60] K. Karim, F. Breton, R. Rouillon, E. V. Ipletska, A. Guerreiro, I.Chianella, A. Sergey, "How to find effective functional monomers for effective molecularly imprinted polymers", Advanced Drug Delivery Reviews, vol. 57, pp. 1795–1808,2005.
[61] L. Fischer, R. Muller, B. Ekberg, and K. Mosbach, "Direct enantioseparation of beta-adrenergic blocker using a chiral stationary phase prepared by molecular imprinting", J. Am. Chem. Soc., vol. 113, pp. 9358–9360, 1991.
[62] B. Sellergren, "Imprinted dispersion polymers: A new class of easily accessible affinity stationary phase", Journal of Chromatography A, vol. 673, pp. 133–141, 1994.
[63] B. Sellergren, "Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer", Anal. Chem., vol. 66, pp. 1578–1582, 1994.
[64] O. Ramstrom, K.Skudar, J. Haines, P. Patel, O. Bruggemann, "Food Analyses Using Molecularly Imprinted Polymers", Journal of agricultural and food chemistry, vol. 49, pp. 2106, 2001.
[65] H.Y. Lin, J. Rick, T.C. Chou ,"Optimizing the formulation of a myoglobin molecularly imprinted thin-film polymer-formed using a micro-contact imprinting method", Biosensor and Bioelectronics, vol. 22, pp. 3293–3301, 2007.
[66] P.C. Chou, J. Rick, T.C. Chou, "C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach", Analytica Cjimica Acta, vol. 542, pp.20–25, 2005.
[67] C.Y. Hsu, H.Y. Lin, B.T. Wu, T.C. Chou, " Styrene-containing Molecularly Imprinted Polymers Enhance the Recognition of Ribonuclease A ", Biosensors and Bioelectronics, vol. 22, pp. 355–368, 2006.
[68] C.Y. Hsu, H.Y. Lin, T.C. Chou, "Synthesis and Recognition by Ribonuclease A Imprinted Polymer", Nanotechnology, pp. S77–S83, 2006.
[69] J.Y. Ju, C.S. Shin, M.J. Whitcombe, E.N. Vulfson, "Binding properties of an aminostyrene-based polymer imprinted with glutamylated monascus pigments", Biotechnology Techniques, vol. 13, pp. 665–669, 1999.
[70] J.Y. Ju, C.S. Shin, M.J. Whitcombe, E.N. Vulfson, "Imprinted polymers as tools for the recovery of secondary metabolites produced by fermentation", Biotechnology and Bioengineering, vol. 64, pp. 232–239, 1999.
[71] T.Y. Lin, C.H. Hu, T.C. Chou, "Determination of albumin concentration by MIP-QCM sensor", Biosensors & Bioelectronics, vol. 20, pp. 75–81, 2004.
[72] K. Haupt, K. Mosbach, "Molecularly imprinted polymers and their use in biomimetic sensors", Chemical Reviews, vol. 100, pp. 2495–2504, 2000.
[73] 林欣怡, " Fabricating an artificial antibody film for detecting myoglobin — using microcontact printing method", 碩士論文,國立成功大學, 2006.
[74] "http://brc.se.fju.edu.tw/plans/homework/41.doc", 2008/07/20
[75] 冷泉港生物科技, " http://0rz.tw/a00mT", 2008/07/20
[76] J. Rick, T.C. Chou, "Enthalpy changes associated with protein binding to thin films", Biosensors & Bioelectronics, vol. 20, pp. 1878–1883, 2005.
[77] W.Y. Chen, C.S. Chen, F.Y. Lin, "Molecular recognition in imprinted polymers: thermodynamic investigation of analyte binding using microcalorimetry", Journal of Chromatography A, vol. 923, pp. 1–6, 2001.
[78] W.P. Fish, J. Ferreira, R.D. Sheardy, N.H. Snow, T.P. O'Brien, "Rational design of an imprinted polymer: Maximizing selectivity by optimizing the monomer-template ratio for a cinchonidine MIP, prior to polymerization, using microcalorimetry", Journal of Liquid Chromatography & Related Technologies, vol. 28, pp. 1–15, 2005.
[79] T. A. Sweden, "Thermometric 2250-series."
[80] 陳威志, "To Design the Creatinine Imprinted Polymers Based on the Information from Microcalorimeter", 碩士論文,國立成功大學, 2004.
[81] D.M. Hawkins, D. Stevenson, S.M. Reddy "Investigation of protein imprinting in hydrogel-based molecularly imprinted polymers (HydroMIPs)",,1992. Analyical Chinica Acta, vol. 542, pp. 61-65, 2005
[82] A.M. Tsai, J.H. van Zanten, M.J. Betenbaugh, " Study of Protein Aggregation Due to Heat Denaturation: A Structural Approach Using Circular Dichroism Spectroscopy, Assay Nuclear Magnetic Resonance, and Static Light Scattering", BIOTECHNOLOGY AND BIOENGINEERING, vol. 59, pp. 273-280, 1998.
[83] M, Miroliaei , B. Ranjbar , H. Naderi-Manesh , M. Nemat-Gorgani, "Thermal denaturation of yeast alcohol dehydrogenase and protection of secondary and tertiary structural changes by sugars: CD and fluorescence studies", Enzyme and Microbial Technology, vol. 40, pp. 896–901, 2007.
[84] I. Surugiu, B. Danielsson, L. Ye, K. Mosbach, K. Haupt, " Irreversible thermal denaturation of Torpedo californica acetylcholinesterase ", Protein Science, vol. 4, pp. 2349–2357, 1995
[85] L. Tang, H. Zhou, Z. Lin, "Crystallization and preliminary X-ray analysis of human muscle creatine kinase", Acta Cryst., pp. 669–670, 1999