| 研究生: |
姚俊魁 Yao, Chun-Kuei |
|---|---|
| 論文名稱: |
台南都會區高密度地面氣溫量測網(HiSAN)
之建置及氣溫時空分佈與都市型態分析 Establishment of high density street-level air temperature observations network(HiSAN) and analysis of air temperature spatial-temporal distribution and urban form in Tainan area |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 都市熱島 、氣溫量測網 、都市型態 、熱島強度 、空氣溫度 |
| 外文關鍵詞: | Urban heat island, Urban morphology, Air temperature, Observations Network |
| 相關次數: | 點閱:119 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,帶來了人口的高速成長及集中,產生都市區域快速擴張及土地開發急遽增加的狀況,進而開始對整個生態環境造成巨大的衝擊,而熱島效應便是此衝擊下最為明顯的現象。過往對於熱島現象的研究多是基於大尺度的資料探討,且少涉及於區域環境差異影響的研究。
為了解區域環境差異對於都市氣溫的分佈及熱島現象的呈現之影響,以利於提供往後進行都市規劃及土地開發的參考,本研究經由統合都市現況各環境參數的評估,並參考過往氣象測站架設方式的優缺點,進行台南都會區域的密集氣候數據量測網絡建置,經由對長期且連續的數據資料進行分析,探討環境差異對氣溫分佈的影響。
首先,本研究呈現了研究區域內的熱島強度逐時變化,發現熱島強度於夜間時,涼、熱季的差異高達1度;而於日間時,差異僅約0.2度。此發現對於後續評估不同時段下都市環境對氣溫的影響極為重要。其次,利用溫度中心位變化的呈現,可看出整體區域的氣溫變化趨勢。而整體溫度中心移動路徑的變化,於熱季時呈現了東西狹長且循環位置位於研究區域的較北側;於涼季時則呈現了較方圓且位於研究區域的東南側。此一結果對於往後欲解析影響氣溫分佈的因子,具有相當大的利用價值。最後,區域氣溫的分佈,除受到地理特徵的不同有影響外,配合考量都市環境的差異,進行氣溫變化的分析後,發現在離海距較近的情況下,高開發的都市型態,氣溫高於低開發的都市型態,兩都相差高達1度。這更可證實隨都市開發程度的提升,區域的高溫呈現比例會隨之上升。
Observation of air temperature at street level is essential for elaborating the urban heat island phenomenon and exploring the effect of various urban characteristics on the air temperature distribution. Therefore, this study implements a high density street-level air temperature observation network (HiSAN) in Tainan, Taiwan. For the measurement location, it is determined by various criteria, e.g. urban morphology, building typology, land cover, building energy use, developed levels. Moreover, since the urban built environment is a classification of urban land use corresponding its thermal environment characteristic, the inhomogeneous built environment of the measurement point will be also considered. Finally, totally 100 points is selected in metropolitan area of the Tainan city. These points covered in 21 km in north-south direction and 24 km in east-west direction. The average distance between two nearest points are 1.9 km and is lower in core area as 0.8 km. There are 19 points for the greenery area and 18 points classified middle high residential area. The initial results indicate a 4.2° C heat island intensity in night time and 3.6° C in day time. Although the results indicated urban develop features are related to air temperature distribution, a follow-up analysis on each urban morphology parameter, e.g. sky view factor, material of building and pavement, energy use of buildings, green ratio and imperviousness, revealing better explanation on the phenomenon. For future analysis, the spatial and temporal distribution of air temperature had been studied, and the effect of land use, energy consumption will be also discussed based on the data. The results are useful for the policy maker of urban planning through the urban design review process, and are benefit for the architects during the design scheme, site planning, and material applied.
西文文獻
1. Chen, Y. C., Lin, T. P., & Lin, C. T. (2017). A simple approach for the development of urban climatic maps based on the urban characteristics in Tainan, Taiwan. International Journal of Biometeorology 61(6) 1029-1041.
2. Dozier, J., 1981. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 11, 221-229.
3. Eliasson I, 1996, Urban nocturnal temperatures, street geometry and land use. Atmospheric Environment 30:379-92.
4. Giridharan R, Lau SSY, Ganesan S, 2005, Nocturnal heat island effect in urban residential developments of Hong Kong. Energy and Buildings 37:964-71.
5. Hwang, R. L., Lin, T. P., & Matzarakis, A. (2011). Seasonal effect of urban street shading on long-term outdoor thermal comfort. Building and Environment, 46(4), 863–870.
6. Honjo T, 2012. Daily movement of heat island in Kanto area 6th Japanese-German Meeting on Urban Climatology,
7. Honjo T, 2015. Network optimizationforenhancedresilienceofurbanheatisland measurements, Sustainable Cities and Society19(2015)319–330.
8. Howard, L. (1833) The climate of London: deduced from meteorological observations made in the metropolis and at various places around it (Vol. 2). Harvey and Darton.
9. Hondula, D., Balling, R. C., Vanos, J. K., & Georgescu, M. (2015). Rising temperatures, human health, and the role of adaptation. Current Climate Change Reports, 1(3), 144–154.
10. Kent E (2011) Wind Patterns and the Heat Island in Phoenix, Arizona: 1993-2008. J Arizona Nevada Acad Sci 42(2): 92-103.
11. Lo, C.P., Quattrochi, D.A., Luvall, J.C., 1997. Application of Highresolution Thermal Infrared Remote Sensing and GIS to Assess the Urban Heat Island Effect. Int. J. Remote Sens. 18, 287-304.
12. Muller, C. L., Lee, C., Grimmond, C. S. B., Young, D. T., Cai, X. (2013). Review Sensors and the city: a review of urban meteorological networks. International Journal of Climatology, 33: 1585–1600.
13. Ren C, Ng E, 2012, Urban Climatic Map – An Information Tool for Sustainable Urban The China Architecture & Building Press.
14. Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900.
15. Sun, D., Kafatos, M., 2007. Note on the NDVI-LST relationship and the use of temperature related drought indices over North America. Geophys. Res. Lett. 34, L24406.
16. Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
17. Oke, T. R. (1981). Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. Journal of Climatology, 1, 237–254.> < Oke, T. R. (1987). Boundary layer climates. London: Routledge.
18. Voogt JA, Oke TR, 2003, Thermal remote sensing of urban climates. Remote Sensing of Environment 86:370-84.
19. Weier J, Herring D (2000) Measuring Vegetation (NDVI&EVI).NASA Earth Observatory (http://earthobservatory.nasa.gov/Features/MeasuringVegetation/)
20. Yang, S.R.; Lin, T.P. An integrated outdoor spaces design procedure to relieve heat stress in hot and humid regions. Build. Environ. 2016, 99, 149–160
21. Zhang, Z., Ji, M., Shu, J., Deng, Z., Wu, Y., 2008. Surface urban heat island in shanghai, china: examining the relationship between land surface temperature and impervious surface fractions derived from Landsat ETM+ imagery. The Int. Arch. Photogram. Rem. Sens. Spatial Inform. Sci. 37, 601-606.
中文文獻
1. 林憲德(2009)。人居熱環境。台北:詹氏書局
2. 任超、吳恩融(2011)。城市環境氣候圖-可持續城市規劃輔助信息系統工具。中國:中國建築工業出版社
3. 徐學強、周一星、寧越敏(2009)。城市地理學。北京:高等教育出版社
4. 李魁鵬(1999)。台灣四大都會區都市熱島之研究。國立成功大學建築所博士論文。
5. 廖夆淇(2009)。土地利用型態組成與都市微氣候關係之實測研究-以台中市為例。逢甲大學建築所碩士論文。
6. 鄭貴洲、晁怡(2010)。地理信息系統分析與應用。北京:電子工業出版社
7. 林炯明(2010)。都市熱島效應之影響及其環境意涵。國立台南大學「環境與生態學報」,第3卷,第1期。
8. 林子平、何友鋒、楊鴻銘(2005)。都市地表不透水率之預估與分析-以台中市為例。都市與計劃,32(3),333-353
9. 林子平, 2016, 都市熱環境即時三維可視化-結合空載光達、高光譜熱影像、地面觀測之高解析度熱壓力演算; 科技部專題研究計畫申請書
10. 楊文杉(2011)。土地利用型態組成與都市微氣候關係之環域分析研究-以台中市為例。逢甲大學建築所碩士論文。