簡易檢索 / 詳目顯示

研究生: 王柏安
Wang, Bo-An
論文名稱: 物質平衡法應用於溶解型鹽水氣之研究
Study of Material Balance of Dissolved-Gas Brine Reservoir
指導教授: 謝秉志
Hsieh, Bieng-Zih
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 47
中文關鍵詞: 鹽水氣地層物質平衡法原始氣體埋藏量數值模擬
外文關鍵詞: Gas-dissolved-water, Material balance equation, Original gas in place, Brine-gas, Numerical simulation
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全世界的能源需求逐年增加,非傳統石油及天然氣資源(特別是天然氣)之探勘、開發及生產,已成為石油業者近年來的主要重點。鹽水氣為一種非傳統天然氣資源,其天然氣資源是溶解在鹽水層中。油氣資源潛能評估為油氣資源開發時的重要議題,但目前並無針對溶解型鹽水氣之物質平衡法,因此本研究主要目的為針對溶解型鹽水氣地層進行物質平衡法之研究,並利用所推導的物質平衡法估算鹽水氣地層的天然氣資源量及蘊藏量。
    本研究修改Schilthuis的傳統物質平衡法,考慮地層水的體積變化及溶解於水中的天然氣釋出造成的影響,提出了改良型物質平衡方程式。本研究針對鹽水氣地層物質平衡法進行線性歸劃,除了可以直接進行數值計算,利用鹽水氣地層物質平衡法計算不同壓力下的地層採收率及OGIP,亦可以使用作圖法,利用溶解氣對累積氣產量作圖繪出直線後,將直線外推求得OGIP。
    在本研究中分別建立了數值計算及數值模擬兩種模型進行討論,第一種模型為直接以方程式計算所得到的簡化數學模型,第二種模型為使用加拿大CMG公司的GEM多成份模擬軟體進行數值模擬。第一種模型所得到的計算結果非常相近,與體積法計算結果相比,誤差均小於0.02%,而第二種模型所得到的結果,由方程式計算得到的OGIP和體積法相比十分接近,其誤差為4.02%,但以繪圖法所得到的計算結果卻有較大的誤差。

    本研究蒐集國外礦區資料及文獻建立出鹽水氣地層模型,用以驗證鹽水氣地層物質平衡法之正確性,由數值計算及數值模擬的模型證明鹽水氣物質平衡法在應用上有良好的結果。

    The purpose of this study is to apply the traditional material balance equation (MBE) for estimating the original gas in place (OGIP) of Brine-gas reservoirs. The Brine-gas is mainly made up of CH4. The amount of dissolved gas in water is mainly controlled by the solubility of gas, which increases obviously with pressure, decreases slightly with salinity of water, and gets a minimum value at about 80 oC. In this study, the traditional material balance equation is added in solubility of gas in water and expansion of water volume. This equation is derived as a volume balance which equated the cumulative observed production, expressed as an underground withdrawal. There are two case of Brine-gas models to estimate the accuracy of modified MBE. The results show that this derived method is apply on a Brine-gas reservoir, and the accuracy of the estimates from the derived MBE is validated by the case study.

    中文摘要 I Abstract III 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 符號說明 XI 第一章 緒論 1 1.1 前言 1 第二章 文獻回顧 6 2.1鹽水氣資源 6 2.2鹽水氣地層特性 8 2.3鹽水氣地層之生產特性 10 2.4物質平衡法 13 第三章 理論基礎 18 3.1改良型物質平衡法 18 3.2油氣生產之地下體積量 23 3-3改良型物質平衡法 24 第四章 結果與討論 29 4.1研究案例地層及流體參數描述 29 4.1.1鹽水氣地層參數 29 4.1.2鹽水氣地層流體特性 31 4.1.3鹽水氣地層生產參數 33 4.2利用鹽水氣地層物質平衡法進行計算 33 4.2.1鹽水氣地層之物質平衡法分析(方程式計算結果) 34 4.2.2鹽水氣地層之物質平衡法分析(繪圖法) 35 4.2.3鹽水氣地層之物質平衡法計算結果討論 35 4.3數值模擬對鹽水氣地層物質平衡法之分析 36 4.3.1鹽水氣地層數值模型建立 36 4.3.2鹽水氣地層數值模擬結果 38 第六章 結論與建議 42 參考文獻 44

    1. Akibayashi, S., Zhou, P., Akita, U., The Production Performance of the Water-Dissolved Natural Gas Reservoir. This paper was prepared for presentation at the 7th Offshore South East Asia Conference held in Singapore, 1988.
    2. Anna, L. O., Effects of Groundwater Flow on the Distribution of Biogenic Gas in Parts of the Northern Great Plains of Canada and United States. Scientific Investigations Report 2010-5215: 24, 2010.
    3. Cramer, B., Poelchau, H.S., Gerling, P., Lopatin, N.V., Littke, R., Methane released from groundwater: the source of natural gas accumulations in northern West Siberia. Marine and Petroleum Geology, V. 16, Issue 3, Pages 225-244., 1998.
    4. Department of Energy U.S., Annual Energy Outlook 2015 With Projections to 2040. This report was prepared by the U.S. Energy Information Administration (EIA), 2015.
    5. Fetkovich, M.J., Reese, D.E. and Whitson, C. H., Application of a General Material Balance for High-Pressure Gas Reservoirs, SPE journal, Volume 3, Number 1, pages 3–13., 1998.
    6. Havlena, D., Odeh, A. S., The Material Balance as an Equation of a Straight Line, Journal of Petroleum Technology, v.15, No.8, p.896-900, 1963.
    7. Hsu, L. M., Pleistocene Formation with Dissolved-in-Water Type Gas in the Chianan Plain, Taiwan. Petroleum Geology of Taiwan v. 20, p. 199-213, 1984.
    8. Корцинстанкин, B. H., Natural gas resources dissolved in underground water circle and its development feasibility evaluation principles [J]. Liu Jicheng, Trans. Geological Science and Technology News, v.10, p. 9-11, 1991.
    9. Katz, B. J., Microbial processes and natural gas accumulations: The Open Geology Journal, n. 5, p. 75-83., 2011.
    10. Ling, K., Wu, X., Zhang, H., He, J., More Accurate Method to Estimate OGIP and Recoverable Gas in Overpressured Reservoir. Presentation at the SPE Production and Operations symposium held in Oklahoma City, USA, 2013.
    11. Manrique, J.F., Kaneko, T., Reservoir Management Strategies For Development of Gas Dissolved In Water (Brine) Reservoirs. This paper was prepared for presentation at the 2000 SPE Asia Pacific Conference on Integrated Modelling for Asset Management held in Yokohama, Japan, 2000.
    12. Marsden, S. S., Kawai, K., “Suiyosei-Ten’nengasu”, a special type of Japanese natural gas deposit. Amer. Assoc. Petrol. Geol. Bull., v. 49, p. 286-295, 1965.
    13. McCain, W. D., The properties of Petroleum Fluids, Second Edition, PennWell publishing Company, Tulsa., 1990.
    14. Obielum, I. O., Giegbefumwen, P. U., Ogbeide, P. O., A P/Z Plot For Estimating Original Gas in Place in a Geo-pressured Gas Reservoir By The Use of A Modified Material Balance Equation. This paper was prepared for presentation at the Nigeria Annual International Conference and Exhibition held in Lagos, Nigeria., 2015.
    15. Rice, R. D., and Claypool, G. E., Generation, accumulation, and resource potential of biogenic gas. Amer. Assoc. Petrol. Geol. Bull., v. 65, p. 5-25., 1981.
    16. Ridgley, J. L., McNeil, D. H., Gilboy, C. F. Condon, S. M. and Obradovich, J. D., Structural and stratigraphic controls on sites of shallow biogenic gas accumulations in the Upper Cretaceous Belle Fourche abd Second White Specks-Greenhorn Formations of Southern Alberta, Saskatchewan and Northern Montana, in Anderson, D. S., 2001.
    17. Schilthuis, R.J., Active Oil and Reservoir Energy, Trans. AIME 148, 33–51., 1935.
    18. Xu, Sihuang., Unconventional Dissolved Gas Resources in Water and Gas Pool Formation with Degasification, Geological Science and Technology Information, v.29, No.1,p.43-48, 2010.
    19. Xu, Sihuang., Li, Songfeng., Yuan, Caiping., Resource potential of water-soluble gas in the Palaeogene Huizhou Sag, Pearl River Mouth Basin, PETROLEUM EXPLORATION AND DEVELOPMENT., v.39, No.2, P181, 2012.
    20. Zhou, H., Pang, X., Jiang, Z., et al. Key factors controlling migration and accumulation efficiency of oil and gas and their quantitative evaluation [J]. Petroleum Exploration and Development, v.29, No.1, p.14-18, 2002.
    21. Zhang, F., Wei, G., Li, J., et al. Classification and reservoir-controlling factors of water-dissolved gas in Eastern Chaidamu Basin [J]. Natural Gas Geoscience, v.19, No.6, p.882-887, 2008.

    下載圖示 校內:2017-09-01公開
    校外:2017-09-01公開
    QR CODE