簡易檢索 / 詳目顯示

研究生: 李晏綸
Li, Yen-Lun
論文名稱: 雙流體噴霧製程對太陽熱能吸收膜集熱效能之研究
Performance of Solar Absorbing Film by Spraying Processes using Twin-Fluid Atomizer
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 95
中文關鍵詞: 噴塗製程噴霧液滴分布噴塗高度吸收膜材料濃度太陽熱能吸收膜
外文關鍵詞: Spray coating process, droplet size distribution, deposition distance, material concentration, solar absorbing film
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗方法探討雙流體噴霧製程對太陽熱能吸收膜集熱效能
    之影響,本實驗所用吸收膜以噴塗碳黑材料為主,探討影響噴霧製程中的
    關鍵影響因子與薄膜之吸收率(α)、放射率(ε)及集熱效能之關係,因集熱效
    能主要取決於薄膜吸收率及放射率之比值(α/ε),若欲提升薄膜之集熱效能,
    此薄膜需有較高吸收率及較低放射率,才能取得較佳之效能。
    研究結果顯示選擇性吸收膜之吸收率及放射率皆會隨薄膜厚度增加
    而增加,當薄膜厚度增加至某定值後,即使厚度再增加,其吸收率及放射
    率僅趨近於一定值。研究顯示,當薄膜厚度為3~4 μm 之間時,吸收膜之
    集熱效能最佳。另外,噴霧粒徑、噴塗高度與選擇性吸收膜材料之濃度對
    集熱效能亦有很大之影響。由噴塗實驗結果顯示,當噴覆之薄膜厚度約為
    3 μm 時,噴塗時之噴霧粒徑由6.74 μm 增至14.35 μm 時,其集熱效能(α/ε)
    值有遞增之現象,由1.39 增至1.53,顯示較大之液滴具有較佳之噴覆結果。
    噴塗高度由5 cm 增至 15 cm 時,其集熱效能(α/ε)值則呈遞減趨勢,由1.56
    減至1.27。當薄膜厚度為4 μm 時,噴塗時選擇性吸收膜材料之濃度由33.3
    % 增至 66.7 % 時,其集熱效能(α/ε)值由1.34 減至1.26,顯示吸收膜材料
    之濃度太高時,溶劑的揮發不利噴塗效能之提升。
    利用掃描式電子顯微鏡(SEM)對試片薄膜之表面進行分析,結果發現,
    對於相同厚度之吸收薄膜,當噴塗時之噴霧粒徑較大時,薄膜表面吸收材
    料分佈具有較均勻之結果。實驗結果亦顯示,降低噴塗高度及材料濃度時,
    亦有同樣的結果。顯示在噴塗過程中,噴塗溶液中液滴的分布、噴霧液滴
    在基板上之沉積率以及液滴中之溶劑揮發效應等參數式影響吸收膜噴塗
    效能之重要因素。

    This research program investigates the effects of spray coating processes on the performance of solar absorbing film using twin-fluid atomizer. In the experiment, the major material, which is C-black, is first injected by the atomizer to form the thin film. Then we perform the parametric study of the spray coating on the absorptance (α), emittance (ε) and performance of absorbing film. The results show that the absorptance and emittance of absorbing film both increase with the thickness of film increasing. When the thickness of film increases to a fixed value, even if the thickness increases, the absorptance and emittance also approach a constant value. Research shows, when the thickness of film is about 3~4 μm, the absorbing film has the better performance. In addition, the droplet size of spray, the distance between nozzle exit and substrate and concentration of absorbing film material also have great impact on collector performance.

    中文摘要 Ⅰ 英文摘要 III 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 符號說明 XVII 第一章 緒論 1 1-1 簡介 1 1-2 文獻回顧 3 1-2-1 集熱板性能 3 1-2-2 選擇性吸收膜特性 4 1-2-3 霧化原理 6 1-2-4 雙流體霧化器 9 1-2-4-(1) 氣衝式霧化器相關研究 9 1-2-4-(2) 氣助式霧化器相關研究 10 1-2-5 噴霧式塗佈 11 1-2-6 液滴碰撞機制 13 1-3 研究動機與目的 16 第二章 實驗設備及量測儀器 17 2-1 實驗設備 17 2-1-1 霧化器噴霧特性測試 17 2-1-2 霧化器選擇性吸收膜材料噴塗測試 20 2-2 實驗量測儀器 24 2-2-1 INSITEC 粒徑分析儀 24 2-2-2 DV-II+型黏度計 25 2-2-3 新表面粗度儀 27 2-2-4 單光光譜儀 27 2-2-5 放射率量測儀 28 2-2-6 電子磅秤 29 2-2-7 多功能掃瞄式電子顯微鏡 30 2-3 主要量測參數 31 第三章 實驗方法與步驟 33 3-1 霧化器噴霧特性測試 33 3-1-1 實驗方法與步驟 33 3-2-2 實驗操作條件 34 3-2-3 INSITEC 粒徑分析儀的量測 34 3-2 霧化器選擇性吸收膜材料噴塗測試 35 3-2-1 實驗方法與步驟 35 3-2-2 實驗操作條件 39 3-2-2-(1) 改變噴霧粒徑 39 3-2-2-(2) 改變噴塗高度 40 3-2-2-(3) 不同材料濃度揮發及其黏度測試 41 3-2-2-(4) 改變材料濃度 42 第四章 結果與討論 44 4-1 霧化器噴霧特性測試結果 44 4-2 霧化器選擇性吸收膜材料噴塗測試結果 48 4-2-1 噴霧粒徑對選擇性吸收膜特性之影響 49 4-2-1-1 輸送帶速度對薄膜厚度之影響 49 4-2-1-2 薄膜厚度對集熱效能之影響 52 4-2-1-3 噴霧粒徑對集熱效能之影響 55 4-2-2 噴塗高度對選擇性吸收膜特性之影響 62 4-2-2-1 輸送帶速度對薄膜厚度之影響 62 4-2-2-2 薄膜厚度對集熱效能之影響 64 4-2-2-3 噴塗高度對集熱效能之影響 67 4-2-3 不同選擇性吸收膜材料濃度之揮發及其黏度測試結果 74 4-2-4 材料濃度對選擇性吸收膜特性之影響 77 4-2-4-1 輸送帶速度對薄膜厚度之影響 77 4-2-4-2 薄膜厚度對集熱效能之影響 79 4-2-2-3 噴塗高度對集熱效能之影響 82 第五章 結論 89 參考文獻 91

    [1]Chang, K.C., Lee, T.S., Lin, W.M. and Chung, K.M., “Outlook for Solar Water Heaters in Taiwan, Energy Policy,” Vol. 36, pp.66–72, 2008.
    [2]Chang, K.C., Lin, W.M., Lee, T.S. and Chung, K.M., “Local Market of Solar Water Heaters in Taiwan: Review and Perspectives,” Renewable and Sustainable Energy Reviews, Vol.13, pp. 2605–2612, 2009.
    [3]Chang, K.C., Lin, W.M., Lee, T.S. and Chung, K.M., “Subsidy Programs on Diffusion of Solar Water Heaters: Taiwan’s Experience,” Energy Policy, Vol.39, pp. 563–567, 2011.
    [4]張克勤、李聰盛、鍾光民,“陽光普照創造台灣太陽能熱水系統發展契
    機”工程,Vol. 78, No. 1, pp. 74-81, 2005.
    [5]黃文雄,“太陽能之應用及理論”,協志工業叢書,1978.
    [6]Kennedy, C.E., “Review of Mid- to high Temperature Solar Selective Absorber Materials,” NREL/TP-520-31267, Golden, CO: National Renewable Energy Laboratory., 2002.
    [7]Orel, B., Orel, Z.C., Bosanac, M. and Krainer, A., “Coil-coating Paints for Solar Collector Panels- I. Characterization and Performance Tests,” Solar and Wind Technology, Vol. 7, pp.699-705, 1990.
    [8]Orel, B., Orel, Z.C. and Jerman, R., “Coil-coating Paints for Solar Collector Panels- II. FT-IR Spectroscopic Investigations,” Solar and Wind Technology,Vol. 7, pp. 713-717, 1990.
    [9]Gunde, M.K., Orel, Z. C. and Hutchins, M.G., “The Influence of Paint Dispersion Parameters on the Spectral Selectivity of Black-pigmented Coatings,” Solar Energy Materials & Solar Cells, Vol. 80, pp. 239-245, 2003.
    [10]Orel, Z. C., Gunde, M.K. and Benz N., “The Preparation and Testing of Spectrally Selective Paints on Different Substrates for Solar Absorbers,” Solar Energy, Vol. 69, pp. 131-135, 2000.
    [11]Orel, Z. C. and Gunde, M.K., “Spectrally Selective Paints Coatings:Preparation and Characterization,” Solar Energy Materials and Solar Cells,Vol. 68, pp. 337-353, 2001.
    [12]Pal, S., Diso, D., Franza, S., Licciulli, A. and Rizzo, L., “Spectrally selective absorber coating from transition metal complex for efficient photothermal conversion,” Journal of Materials Science, Vol. 48, pp. 8268-8276, 2013.
    [13]Orel, B. and Orel, Z.C., “Thickness Sensitive Spectrally Selective (TSSS) Paint for Solar Collectors- Optical Properties, Surface Characterization and Application Properties,” Solar Energy Materials, Vol. 18, pp. 97-107, 1988.
    [14]Lefebvre, A. H., “Atomization and Spray,” Hemisphere Publishing Corporation, New York, pp.1-25, 1989.
    [15]Rizkalla, A. A. and Lefebvre, A.H., “Influence of Liquid Properties on Air blast Atomizer Spray Characteristics,” J. Eng. Power, pp.173-179, 1975.
    [16]Rizkalla, A. A. and Lefebvre, A.H., “The Influence of Air and Liquid Properties on Air blast Atomization,” J. Fluids Eng., Vol.97, pp.316-320, 1975.
    [17]Rizk, N. K. and Lefebvre, A. H., “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol.21, No.8, pp.1139-1142, 1983.
    [18]Beck, J., Lefebvre, A. H. and Koblish, T., “Air Blast Atomization at Conditions of Low Air Velocity,” Paper No AIAA- 89-0217, 1989.
    [19]Beck, J. E., Lefebvre, A. H. and Koblish, T. R., “Liquid Sheet Disintegration by Impinging Air Streams,” Atomization and Sprays, Vol.1, No.2, pp.155-170, 1991.
    [20]Beck, J. E. and Lefebvre, A. H., “Air blast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol.7, NO.2, March-April, 1991.
    [21] Aligner, M. and Wittig, S., “Swirl and Counter Swirl Effects in Prefilming Air blast Atomization,” Trans. ASME, J. Eng. Power, Vol. 102, pp.706-710, 1980.
    [22]許耀仁,“氣衝式平面噴嘴液膜霧化特性之研究”,國立成功大學航太
    所碩士論文, 1993.
    [23]Rizk, N.K. and Lefebvre, A.H., “Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME Vol. 106, 1984.
    [24]Sattelmayer, T. and Witting, S., “Internal Flow Effects in Prefilming Air blast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol.108, pp.465-472, 1986.
    [25]Press, C., Gupta, A.K. and Semerjian, H.G., “Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer,” HTD-Vol.104, pp.111-119, 1988.
    [26]楊坤和,“研究型氣助式噴嘴之噴霧特性研究”,國立成功大學航太所碩士論文, 1992.
    [27]Kevin, S. Chen and Lefebvre, A. H., “Spray Cone Angle of Effervescent Atomizers,” Atomization and Sprays, Vol. 4, pp.291-301, 1994.
    [28]王承光,“氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究”,國立
    成功大學航太所碩士論文,1996.
    [29]陳仲宜,“前瞻奈米鍍膜技術與潛力市場探索”,經濟部ITIS 專案辦公
    室,2004.
    [30]Cui, L., Zhang, Y., Wang, J., Ren, Y. and Song, Y., “Ultra-fast fabrication of Colloidal Photonic Crystals by Spray Coating,” Macromolecular Rapid Communications, pp.598-603, 2009.
    [31]Shkodkin, A., Kashirin, A., Klyuev, O. and Buzdygar, T., “Metal Particle Deposition Stimulation by Surface Abrasive Treatment in Gas Dynamic Spraying,” Journal of Thermal Spray Technology, pp.382-386, 2006.
    [32]Irissou, E., Legoux, J.G., Arsenault, B. and Moreau, C., “Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties,” Journal of Thermal Spray Technology, pp.661-668, 2007.
    [33]Zhou, H., Chong, B.K., Stopford, P., Mill, G., Midha, A., Donaldson, L., J.M.R. Weaver, J. Vac. Sci. Technol, pp.3594-3599, 2000.
    [34] J. Linden, Ch. Thanner, B. Schaaf, S. Wolff, B. Lagel, E. Oesterschulze, “Spray coating of PMMA for pattern transfer via electron beam lithography on surfaces with high topography, ” Microelectronic Engineering. Vol.88, pp.2030-2032, 2011.
    [35]Tilney, R., Mech, A.M.I., Henry, E., Peabody, W., Br. J. Appl. Phys, pp.51-54, 1953.
    [36]Fonseca, C.G., Basaglica, R.M.F., Brant, M.C., T. Matencio, R.Z. Domingues, Powder Technol, pp.352-358, 2009.
    [37]Ashgriz, N. and Givi, P., “Binary Collision Dynamics of Fuel Droplets,” Heat and Fluid Flow, Vol.8, No.3, pp.205-210, 1987.
    [38]Rein, M., “Phenomena of liquid droplet impact,” Fluid Dyn. Res., Vol.12, pp.61-93, 1993.
    [39]陳詠傑,“太陽能集熱板選擇性吸收膜之最佳化噴塗製程研究”,國立
    成功大學航太所碩士論文, 2010.

    下載圖示 校內:2016-08-15公開
    校外:2016-08-15公開
    QR CODE