簡易檢索 / 詳目顯示

研究生: 王哲鴻
Wang, Jhe-hong
論文名稱: 應用形狀最佳化於旋轉與直線運動之撓性機構設計
Optimal Shape Design for Flexural Rotary and Linear Motion Mechanisms
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 84
中文關鍵詞: 撓性機構形狀記憶合金定力撓性機構精密定位機構形狀最佳化旋轉撓性操縱器
外文關鍵詞: shape optimization, positioning mechanism, rotary flexure manipulators, constant force mechanism, shape memory alloy, Compliant mechanisms
相關次數: 點閱:138下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的為應用形狀最佳化方法來設計應用於機電系統之撓性機構。一體成型之撓性機構利用本身撓性桿件傳遞位移及力量,因此具有零磨耗、無背間隙及可微小化之優點。其中,不同幾何形狀之葉片式撓性機構對其形變傳遞及應力分佈有相當大之影響,因此我們針對此項特點進行撓性機構之幾何形狀設計。本論文提出一廣泛性最佳化方法,在避免材料降服前提供最佳的撓性鉸鍊形狀並分別設計旋轉式及直線式之操縱器。在旋轉式操縱器設計部分,由於形狀記憶合金線(簡稱型憶合金線)具有大行程、高功重比且不需高電壓驅動之優點,因此我們結合型憶合金線為驅動器、撓性鉸鍊為傳遞構造使其適合於在一有限空間內設計高精度之旋轉機構。為探討不同形狀對於旋轉量之影響。經由不同模擬結果得到不同形狀對於旋轉量之變異。此外,藉由平行連接兩組單向具型憶合金線之操縱器,發展出一在不犧牲旋轉量下之主動雙向旋轉操縱器。雙向轉動操縱器因其主動式收縮與伸張使其反應速度快於藉撓性桿件被動式回復單向轉動操縱器。為精確地控制操縱器之運動,我們採用比例積分微分控制器進行控制,並藉由步階及追蹤實驗以表現其性能。在直動式操縱器部分,本論文改變撓性桿件形狀及厚度之變異設計出一定力裝置,針對不同目標函數加以討論,並選擇最適當的目標函數及其結果作為定力裝置設計之參考依據,並提出定力裝置能應用於加工及機器夾取上的可行方案。最後我們期許此設計方法能廣泛應用在不同尺度種類操縱器之設計上。

    This thesis presents a shape optimization method to design rotary manipulators and a translational constant force mechanism. Monolithic flexures transmit motion and force without friction/backlash and are capable of miniaturization. Shape memory alloy (SMA) exhibits large stroke, high energy density, and requires low driving voltage. Combining SMA as driver and flexure as load transmitter makes them well-suited for tasks that require high precision and compact size. To explore flexure shapes beyond traditional notch hinges and leaf springs, we present a general shape optimization method. First, we find the best shapes for maximal rotation without yield. The advantages gained from shape variations are shown through several simulations. By parallel connecting two one-way manipulators with two opposing SMA wires, we contribute a new two-way manipulator to achieve two-way motion without sacrificing large stroke. The two-way manipulator actively contracts and extends therefore it is much faster than owe-way manipulators the extension of which relies passively on flexural force. A feedback PID controller is implemented to precisely control the motion of the manipulators. We illustrate their performance by step and tracking response experiments. In addition, we employ the optimal design of shape and width of compliant links to design a constant force mechanism. Two different objective functions to design flexural linear mechanism are discussed. With the merits shown, we expect that the flexural rotary and linear motion mechanisms can be utilized in meso to micro scale applications.

    摘要 I ABSTRACT II 致謝 III TABLE OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII LIST OF SYMBOLS IX CHAPTER 1 INTRODUCTION 1 1.1 Review of Applications of Compliant Mechanisms 1 1.2 Introduction of Positioning Mechanisms 1 1.3 Introduction of Antagonistic Mechanism Actuated by SMA 7 1.4 Introduction of Constant Force Mechanisms 8 1.5 Motivations and Objectives 10 1.6 Organization of Thesis 13 CHAPTER 2 MATHEMATICAL MODEL OF COMPLIANT BEAMS 14 2.1 Introduction 14 2.2 Model Formulation of Compliant Mechanisms 14 2.2.1 Parameterization using intrinsic functions 14 2.2.2 Deformation analyses 17 2.3 Boundary Conditions for Compliant Mechanisms 19 2.4 Fixture and Pre-tension of SMA 23 2.5 Conclusions 25 CHAPTER 3 DESIGN OF A ONE-WAY ROTATIONAL MANIPULATOR 26 3.1 Introduction 26 3.2 Model of the One-way Rotational Manipulator 26 3.2.1 Formulation of Flexure 1 27 3.2.2 Optimization procedure of Flexure 1 30 3.3 Fabrication and Assembly 34 3.4 Experiment and Verification 37 3.5 Conclusions 39 CHAPTER 4 DESIGN OF A TWO-WAY ROTATIONAL MANIPULATOR 41 4.1 Introduction 41 4.2 Model of the Two-way Rotational Manipulator 41 4.2.1 Formulation of Flexure 2 42 4.2.2 Optimization procedure of Flexure 2 44 4.3 Fabrication and Assembly 49 4.4 Experiment and Verification 51 4.5 Conclusions 56 CHAPTER 5 DESIGN OF A COMPLIANT CONSTANT FORCE MECHANISM 59 5.1 Introduction 59 5.2 Design Formulation of a Compliant Constant Force Mechanism 59 5.3 Optimal Shapes of Compliant Constant Force Mechanism 63 5.4 Potential Applications of Compliant Constant Force Mechanism 70 5.5 Experiment Validation 72 5.6 Conclusions 74 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 75 6.1 Conclusions 75 6.2 Future Works 77 REFERENCES 79 PERSONAL COMMUNICATION 83 COPYRIGHT 84

    [1] Wu, L. and Xie, H., 2008, “A large Vertical Displacement Electrothermal Bimorph Microactuator with Very Small Lateral Shift,” Sensors and Actuators A: Physical, 145-146, pp.371–379.
    [2] Furutani, K., Suzuki, M., and Kudoh R., 2004, “Nanometre-cutting Machine using a Stewart-platform Parallel Mechanism,” Measurement Science and Technology, 15(2), pp.467–474.
    [3] Krieger, A., Susil, R. C., Menard, C., Coleman, J. A., Fichtinger, G., Atalar, E., and Whitcomb, L. L., “Design of a Novel MRI Compatible Manipulator for Image Guided Prostate Interventions,” IEEE Transaction Biomedical Engineering, 52(2), pp. 306–313, 2005.
    [4] Li, J., Sedaghati, R., and Waechter, D., 2005, “Design and Development of a New Piezoelectric Inchworm Actuator,” Mechatronics, 15, pp. 651-681.
    [5] Yi, B. J., Chung, G. B., Na, H. Y., Kim, W. K., Suh, I.H., 2003, “Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges,” IEEE Transaction Robotics and Automation, 19(4), pp. 604-612.
    [6] Rakotondrabe, M., Haddab, Y. and Lutz, P., 2006, “Design, Development and Experiments of a High Stroke-Precision 2DoF (Linear-Angular) Microsystem,” IEEE International Conference on Robotics and Automation, Orlando, USA.
    [7] Kim, Q., Kang, D., Shim, J., Song, I. and Gweon, D., 2005, “Optimal design of a flexure hinge-based XYZ atomic force microscopy scanner for minimizing Abbe errors,” Review of Scientific Instruments, 76, 073706.
    [8] Lu, T. F., Handley, D. C., Yong, Y. K. and Eales, C., 2004, “A Three-DOF Compliant Micromotion Stage with Flexure Hinges,” Industrial Robot, 31(4), pp. 355–361.
    [9] http://www.physikinstrumente.com/
    [10] Yao, Q., Dong, J., Ferreira, P.M., 2007, “Design, Analysis, Fabricationand Testing of a Piezo-driven Parallel-Kinematics Micropositioning XY Stage”, International Journal of Machine Tools & Manufacture, 47, pp. 946–961.
    [11] Yee, Y, Bu, J. U., Ha, M., Chio, J., Oh, H., Lee, S., Nam, H., Jan. 2001, “Fabrication and Characterization of a PZT Actuated Micromirror with Two-axis Rotational Motion for Free Space Optics,” Proceeding 14th IEEE International Micro Electronic Mechanical System Conference, pp. 317-320.
    [12] Xu, H. G., Ono, T. and Esashi, M., 2006, “Precise Motion Control of a Nanopositioning PZT Microstage using Integrated Capacitive Displacement Sensors,” Journal of Micromechanics and Microengineering, 16, pp. 2747–2754.
    [13] Smith, S. T., 2000, Flexures: Elements of Elastic Mechanisms, CRC Press.
    [14] Hoffmann, M., Nusse, D. and Voges, E., 2001, “Electrostatic Parallel-plate Actuators with Large Deflections for use in Optical Moving-fibre Switches,” Journal of Micromechanics and Microengineering, 11, pp. 323–328.
    [15] Culpepper, M. L. and Anderson, G., 2004, “Design of a Low-cost Nano-manipulator which Utilizes a Monolithic, Spatial Compliant Mechanism,” Precision Engineering, 28, pp. 469–482.
    [16] Cho, H. J. and Chong, H. A. 2003, “Magnetically-driven Bi-directional Optical Microscanner,” Journal of Micromechanics and Microengineering, 13, pp.383–389.
    [17] Teo, T. J., Chen, I. M., Yang, G. and Lin W., 2008, “A flexure-based electromagnetic linear actuator,” Nanotechnology, 19, 315501.
    [18] Lin, C. H., Hung, S. K., Chen, M. Y., Li, S. T. and Fu, L. C., 2008, “A Novel High Precision Electromagnetic Flexure-Suspended Positioning Stage with an Eddy Current Damper,” International Conference on Control, Automation and Systems, Seoul, Korea.
    [19] Chu, L. L and Gianchandani, Y. B., 2003, “A Micromachined 2D Positioner with Electrothermal Actuation and sub-nanometer Capacitive Sensing,” Journal of Micromechanics and Microengineering, 13, 279–285
    [20] Yang, J. P., Deng, X. C. and Chong, T. C., 2005, “An Electro-thermal Bimorph-based Microactuator for Precise Track-positioning of Optical Disk Drives,” Journal of Micromechanics and Microengineering, 15, pp.958–965.
    [21] Moulton, T. and Ananthasuresh, G.K., 2001, “Micromechanical Devices with Embedded Electro-thermal-compliant Actuation,” Sensors and Actuators A: Physics, 90, pp.38–48.
    [22] Wu, M. and Fang, W., 2006, “Integrated Bi-directional Focusing and Tracking Actuators in a Monolithic Device for a MEMS Optical Pick-up Head,” Journal of Micromechanics and Microengineering, 16, pp.1290–1297.
    [23] Peng, B., Zhu, Y., Petrov, I., and Espinosa, H. D., 2008, “A Microelectromechanical System for Nano-Scale Testing of One Dimensional Nanostructures,” Sensor Letters, 6, pp.1–12.
    [24] Lan, C. C. and Yang Y. N., 2009, “A Computational Design Method for Shape Memory Alloy Wire Actuated Compliant Finger,” ASME Journal of Mechanical Design, 131, 021009.
    [25] Nishida, M., Tanaka, K. and Wang H, O., May 2006, “Development and Control of a Micro Biped Walking Robot using Shape Memory Alloys,” Proceedings of 2006 IEEE International Conference on Robotics and Automation.
    [26] Sreekumar, M., Nagarajan, T. and M Singaperumal, 2008, “Experimental Investigations of the Large Deflection Capabilities of a Compliant Parallel Mechanism Actuated by Shape Memory Alloy Wires,” Smart Materials and Structures, 17(6), 065025.
    [27] Song, G., Chaudhry, V., and Batur, C., 2003, “Precision Tracking Control of Shape Memory Alloy Actuators Using Neural Networks and a Sliding-mode Based Robust Controller,” Smart Materials and Structures, 12, pp. 223–231.
    [28] Selden, B., Cho, K., and Asada, H. H., 2006, “Segmented Shape Memory Alloy Actuators Using Control,” Smart Materials and Structures, 15, pp. 642–652.
    [29] Hino, T. and Takashi M., Aug. 2004, “Development of a Miniature Robot Finger with a Variable Stiffness Mechanism using Shape Memory Alloy,” International Simposium on Robotics and Automation, Quertaro Mxico
    [30] Bundhoo, V., Haslam, E., Birch B., and Park, E. J., 2008, “A Shape Memory Alloy-based Tendon-driven Actuation System for Biomimetic Artificial Fingers, Part I: Design and Evaluation,” Robotica, Cambridge University Press.
    [31] Kohl, M., Just, E., Pfleging, W., Miyazaki, S., 2000, SMA Microgripper with Integrated Antagonism, Sensors and Actuators A: Physical, 83, pp. 208–213.
    [32] Takashi, M. and Toshiyuki, H., Aug. 2006, Miniature Five-Fingered Robot Hand Driven by Shape Memory Alloy Actuators, Proceedings of the 12th IASTED International Conference, Honolulu, Hawaii, USA.
    [33] Reynaerts, D., Peirs, J., Brussel, H. V., 1996, Design of a Shape Memory Actuated Gastrointestinal Intervention System, Eurosensors X, Leuven, Belgium.
    [34] Boyle, C., Howell, L.L., Magleby, S.P., Evans, M.S., 2003, "Dynamic Modeling of Compliant Constant-force Compression Mechanisms,” Mechanism and Machine Theory 38, pp. 1469–1487.
    [35] Nahar, D. and Sugar, T. G., Sep. 2003, “Compliant Constant-Force Mechanism with a Variable Output for Micro/Macro Applications,” IEEE International Conference on Robotics and Automation.
    [36] Pedersen, C. B. W., Fleck, N. A., Ananthasuresh, G. K., 2006, “Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force” , ASME Journal of Mechanical Design, 128(5), pp. 1101–1112.
    [37] Bono., M., B. and Robin H., 2007, “A Flexure-based Tool Holder for sub-μm Positioning of a Single Point Cutting Tool on a Four-axis Lathe,” Precision Engineering, 31, pp. 169–176.
    [38] Meaders, J. C. and Mattson, C. A., Jan. 2008. “Robust Design Optimization of a Constant Force Mechanism Using a Surrogate Modeling Approach,” No. AIAA-2008-900, Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit.
    [39] Lan, C. C., and Lee, K. M., 2006, Generalized Shooting Method for Analyzing Compliant Mechanisms with Curved Members, ASME Journal of Mechanical Design, 128, Issue 4, pp. 765–775.
    [40] Lan, C. C. and Cheng, Y. J., 2008, “Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions,” ASME Journal of Mechanical Design, 130, 072304.
    [41] Lagoudas, Dimitris C., 2008, Shape Memory Alloys: Modeling and Engineering Applications, Springer.
    [42] http://www.dynalloy.com/
    [43] http://www.leespring.com/int_learn_constant_force_springs.asp
    [44] Cheng, Y. J., 2008, "Shape Design of Compliant Mechanisms Using Bezier Curves", Master thesis, National Cheng Kung University, Taiwan.
    [45] Teh, Y. H., Featherstone, R., 2007, “Frequency response analysis of shape memory alloy actuators,” International Conference on Smart Materials and Nanotechnology in Engineering, Proceedings of the SPIE, 6423, pp. 64232J.

    下載圖示 校內:立即公開
    校外:2009-07-23公開
    QR CODE